Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268368

RESUMEN

Human-driven extinctions can affect our understanding of evolution, through the nonrandom loss of certain types of species. Here, we explore how knowledge of a major evolutionary transition-the evolution of flightlessness in birds-is biased by anthropogenic extinctions. Adding data on 581 known anthropogenic extinctions to the extant global avifauna increases the number of species by 5%, but quadruples the number of flightless species. The evolution of flightlessness in birds is a widespread phenomenon, occurring in more than half of bird orders and evolving independently at least 150 times. Thus, we estimate that this evolutionary transition occurred at a rate four times higher than it would appear based solely on extant species. Our analysis of preanthropogenic avian diversity shows how anthropogenic effects can conceal the frequency of major evolutionary transitions in life forms and highlights the fact that macroevolutionary studies with only small amounts of missing data can still be highly biased.

3.
Sci Total Environ ; 705: 135823, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31972951

RESUMEN

Anthropogenic activities and intensive farming are causing nitrate pollution in groundwater bodies. These aquifers are drained by springs which, in the Mediterranean region, act as refugia for preserving biodiversity of species that need continuous water. Some springs are also used for drinking water for wild animals, livestock and humans, so if their water quality is compromised it can become a threat to public health. However, the impact of nitrate pollution on these biotic communities remains unknown. We sampled 338 assemblages of aquatic and semi-aquatic bryophytes (i.e., hygrophytic mosses and liverworts) growing in springs in a gradient of water conductivity, nitrate concentration and climate and distributed across the north-east of the Iberian Peninsula to investigate the impact of nitrate pollution on the diversity of bryophytes and moss functional traits in Mediterranean springs. Based on previous literature suggesting that increased nitrogen load decreases biodiversity in grasslands and freshwater ecosystems, we hypothesised that water nitrate pollution in springs decreases bryophyte diversity at the local and regional scales. Our results indicated that, at the local scale (spring), nitrate pollution reduced the number and the likelihood of finding a rare species in springs. Rare species were found in 4% of the springs with nitrate above 50 mg L-1 but in 32% of the springs with nitrate below 50 mg L-1. Moss, liverwort and overall bryophyte diversity were not directly affected by nitrate at the local scale but nitrate consistently decreased diversity of mosses, liverworts and rare bryophyte species at the regional scale. We also found that warmer and drier springs presented fewer bryophyte species. Our results show that the combination of nitrate pollution, increasing temperature and drought could severely threaten bryophyte diversity in Mediterranean springs. Our results indicate that the absence of rare bryophytes could be used as a bioindicator of nitrate pollution in springs.


Asunto(s)
Briófitas , Manantiales Naturales , Animales , Biodiversidad , Ecosistema , Nitratos
4.
Nat Plants ; 5(12): 1222-1228, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31792395

RESUMEN

Mast seeding is one of the most intriguing reproductive traits in nature. Despite its potential drawbacks in terms of fitness, the widespread existence of this phenomenon suggests that it should have evolutionary advantages under certain circumstances. Using a global dataset of seed production time series for 219 plant species from all of the continents, we tested whether masting behaviour appears predominantly in species with low foliar nitrogen and phosphorus concentrations when controlling for local climate and productivity. Here, we show that masting intensity is higher in species with low foliar N and P concentrations, and especially in those with imbalanced N/P ratios, and that the evolutionary history of masting behaviour has been linked to that of nutrient economy. Our results support the hypothesis that masting is stronger in species growing under limiting conditions and suggest that this reproductive behaviour might have evolved as an adaptation to nutrient limitations and imbalances.


Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Semillas/metabolismo , Evolución Biológica , Clima , Nutrientes/metabolismo , Estaciones del Año , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...