Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168315

RESUMEN

A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state-of-the-art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel unrolling and de-confounding techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The unrolling process helps to identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the de-confounding process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery and network inference algorithms applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.

2.
Microb Genom ; 8(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748547

RESUMEN

The use of whole metagenomic data to infer the relative abundance of all its microbes is well established. The same data can be used to determine the replication rate of all eubacterial taxa with circular chromosomes. Despite their availability, the replication rate profiles (metareplicome) have not been fully exploited in microbiome analyses. Another relatively new approach is the application of causal inferencing to analyse microbiome data that goes beyond correlational studies. A novel scalable pipeline called MeRRCI (Metagenome, metaResistome, and metaReplicome for Causal Inferencing) was developed. MeRRCI combines efficient computation of the metagenome (bacterial relative abundance), metaresistome (antimicrobial gene abundance) and metareplicome (replication rates), and integrates environmental variables (metadata) for causality analysis using Bayesian networks. MeRRCI was applied to an infant gut microbiome data set to investigate the microbial community's response to antibiotics. Our analysis suggests that the current treatment stratagem contributes to preterm infant gut dysbiosis, allowing a proliferation of pathobionts. The study highlights the specific antibacterial resistance genes that may contribute to exponential cell division in the presence of antibiotics for various pathogens, namely Klebsiella pneumoniae, Citrobacter freundii, Staphylococcus epidermidis, Veilonella parvula and Clostridium perfringens. These organisms often contribute to the harmful long-term sequelae seen in these young infants.


Asunto(s)
Recien Nacido Prematuro , Metagenoma , Lactante , Recién Nacido , Humanos , Antibacterianos/farmacología , Disbiosis , Teorema de Bayes , Bacterias , Farmacorresistencia Bacteriana/genética
3.
Sci Rep ; 11(1): 5724, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707536

RESUMEN

Causal inference in biomedical research allows us to shift the paradigm from investigating associational relationships to causal ones. Inferring causal relationships can help in understanding the inner workings of biological processes. Association patterns can be coincidental and may lead to wrong conclusions about causality in complex systems. Microbiomes are highly complex, diverse, and dynamic environments. Microbes are key players in human health and disease. Hence knowledge of critical causal relationships among the entities in a microbiome, and the impact of internal and external factors on microbial abundance and their interactions are essential for understanding disease mechanisms and making appropriate treatment recommendations. In this paper, we employ causal inference techniques to understand causal relationships between various entities in a microbiome, and to use the resulting causal network to make useful computations. We introduce a novel pipeline for microbiome analysis, which includes adding an outcome or "disease" variable, and then computing the causal network, referred to as a "disease network", with the goal of identifying disease-relevant causal factors from the microbiome. Internventional techniques are then applied to the resulting network, allowing us to compute a measure called the causal effect of one or more microbial taxa on the outcome variable or the condition of interest. Finally, we propose a measure called causal influence that quantifies the total influence exerted by a microbial taxon on the rest of the microiome. Our pipeline is robust, sensitive, different from traditional approaches, and able to predict interventional effects without any controlled experiments. The pipeline can be used to identify potential eubiotic and dysbiotic microbial taxa in a microbiome. We validate our results using synthetic data sets and using results on real data sets that were previously published.

4.
BMC Genomics ; 21(Suppl 6): 663, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349235

RESUMEN

BACKGROUND: Microbe-microbe and host-microbe interactions in a microbiome play a vital role in both health and disease. However, the structure of the microbial community and the colonization patterns are highly complex to infer even under controlled wet laboratory conditions. In this study, we investigate what information, if any, can be provided by a Bayesian Network (BN) about a microbial community. Unlike the previously proposed Co-occurrence Networks (CoNs), BNs are based on conditional dependencies and can help in revealing complex associations. RESULTS: In this paper, we propose a way of combining a BN and a CoN to construct a signed Bayesian Network (sBN). We report a surprising association between directed edges in signed BNs and known colonization orders. CONCLUSIONS: BNs are powerful tools for community analysis and extracting influences and colonization patterns, even though the analysis only uses an abundance matrix with no temporal information. We conclude that directed edges in sBNs when combined with negative correlations are consistent with and strongly suggestive of colonization order.


Asunto(s)
Microbiota , Teorema de Bayes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA