Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2550, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514632

RESUMEN

In graphene devices, the electronic drift velocity can easily exceed the speed of sound in the material at moderate current biases. Under these conditions, the electronic system can efficiently amplify acoustic phonons, leading to an exponential growth of sound waves in the direction of the carrier flow. Here, we show that such phonon amplification can significantly modify the electrical properties of graphene devices. We observe a superlinear growth of the resistivity in the direction of the carrier flow when the drift velocity exceeds the speed of sound - resulting in a sevenfold increase over a distance of 8 µm. The resistivity growth is observed at carrier densities away from the Dirac point and is enhanced at cryogenic temperatures. We develop a theoretical model for the resistivity growth due to the electrical amplification of acoustic phonons - reaching frequencies up to 2.2 THz - where the wavelength is controlled by gate-tunable transitions across the Fermi surface. These findings provide a route to on-chip high-frequency sound generation and detection in the THz frequency range.

2.
Phys Rev Lett ; 131(13): 131601, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37832012

RESUMEN

The presence of nearby conformal field theories (CFTs) hidden in the complex plane of the tuning parameter was recently proposed as an elegant explanation for the ubiquity of "weakly first-order" transitions in condensed matter and high-energy systems. In this work, we perform an exact microscopic study of such a complex CFT (CCFT) in the two-dimensional O(n) loop model. The well-known absence of symmetry-breaking of the O(n>2) model is understood as arising from the displacement of the nontrivial fixed points into the complex temperature plane. Thanks to a numerical finite-size study of the transfer matrix, we confirm the presence of a CCFT in the complex plane and extract the real and imaginary parts of the central charge and scaling dimensions. By comparing those with the analytic continuation of predictions from Coulomb gas techniques, we determine the range of validity of the analytic continuation to extend up to n_{g}≈12.34, beyond which the CCFT gives way to a gapped state. Finally, we propose a beta function which reproduces the main features of the phase diagram and which suggests an interpretation of the CCFT as a liquid-gas critical point at the end of a first-order transition line.

3.
Phys Rev Lett ; 129(15): 157701, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269972

RESUMEN

It has long been realized that even a perfectly clean electronic system harbors a Landauer-Sharvin resistance, inversely proportional to the number of its conduction channels. This resistance is usually associated with voltage drops on the system's contacts to an external circuit. Recent theories have shown that hydrodynamic effects can reduce this resistance, raising the question of the lower bound of resistance of hydrodynamic electrons. Here, we show that by a proper choice of device geometry, it is possible to spread the Landauer-Sharvin resistance throughout the bulk of the system, allowing its complete elimination by electron hydrodynamics. We trace the effect to the dynamics of electrons flowing in channels that terminate within the sample. For ballistic systems this termination leads to back-reflection of the electrons and creates resistance. Hydrodynamically, the scattering of these electrons off other electrons allows them to transfer to transmitted channels and avoid the resistance. Counterintuitively, we find that in contrast to the ohmic regime, for hydrodynamic electrons the resistance of a device with a given width can decrease with its length, suggesting that a long enough device may have an arbitrarily small total resistance.


Asunto(s)
Electrones , Hidrodinámica
4.
Nat Commun ; 13(1): 4596, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933412

RESUMEN

Applying in-plane uniaxial pressure to strongly correlated low-dimensional systems has been shown to tune the electronic structure dramatically. For example, the unconventional superconductor Sr2RuO4 can be tuned through a single Van Hove point, resulting in strong enhancement of both Tc and Hc2. Out-of-plane (c axis) uniaxial pressure is expected to tune the quasi-two-dimensional structure even more strongly, by pushing it towards two Van Hove points simultaneously. Here, we achieve a record uniaxial stress of 3.2 GPa along the c axis of Sr2RuO4. Hc2 increases, as expected for increasing density of states, but unexpectedly Tc falls. As a first attempt to explain this result, we present three-dimensional calculations in the weak interaction limit. We find that within the weak-coupling framework there is no single order parameter that can account for the contrasting effects of in-plane versus c-axis uniaxial stress, which makes this new result a strong constraint on theories of the superconductivity of Sr2RuO4.

5.
Nat Phys ; 18(7): 819-824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847475

RESUMEN

In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking.

6.
Research (Wash D C) ; 2020: 4643507, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318686

RESUMEN

Highly conductive topological semimetals with exotic electronic structures offer fertile ground for the investigation of the electrical and thermal transport behavior of quasiparticles. Here, we find that the layer-structured Dirac semimetal PtSn4 exhibits a largely suppressed thermal conductivity under a magnetic field. At low temperatures, a dramatic decrease in the thermal conductivity of PtSn4 by more than two orders of magnitude is obtained at 9 T. Moreover, PtSn4 shows both strong longitudinal and transverse thermoelectric responses under a magnetic field. Large power factor and Nernst power factor of approximately 80-100 µW·cm-1·K-2 are obtained around 15 K in various magnetic fields. As a result, the thermoelectric figure of merit zT is strongly enhanced by more than 30 times, compared to that without a magnetic field. This work provides a paradigm for the decoupling of the electron and hole transport behavior of highly conductive topological semimetals and is helpful for developing topological semimetals for thermoelectric energy conversion.

7.
Phys Rev Lett ; 124(14): 140602, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338950

RESUMEN

Focusing on semiclassical systems, we show that the parametrically long exponential growth of out-of-time order correlators (OTOCs), also known as scrambling, does not necessitate chaos. Indeed, scrambling can simply result from the presence of unstable fixed points in phase space, even in a classically integrable model. We derive a lower bound on the OTOC Lyapunov exponent, which depends only on local properties of such fixed points. We present several models for which this bound is tight, i.e., for which scrambling is dominated by the local dynamics around the fixed points. We propose that the notion of scrambling be distinguished from that of chaos.

8.
Nature ; 576(7785): 75-79, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802019

RESUMEN

Hydrodynamics, which generally describes the flow of a fluid, is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate1. Although various aspects of electron hydrodynamics have been revealed in recent experiments2-11, the fundamental spatial structure of hydrodynamic electrons-the Poiseuille flow profile-has remained elusive. Here we provide direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow. Using a scanning carbon nanotube single-electron transistor12, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperatures into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a 'phase diagram' that characterizes the electron flow regimes. Our results provide direct confirmation of Poiseuille flow in the solid state, and enable exploration of the rich physics of interacting electrons in real space.

9.
Phys Rev Lett ; 122(24): 240605, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322384

RESUMEN

We argue that symmetry-broken phases proximate in phase space to symmetry-protected topological phases can exhibit dynamical signatures of topological physics. This dynamical, symmetry-protected "topological" regime is characterized by anomalously long edge coherence times due to the topological decoration of quasiparticle excitations, even if the underlying zero-temperature ground state is in a nontopological, symmetry-broken state. The dramatic enhancement of coherence can even persist at infinite temperature due to prethermalization. We find exponentially long edge coherence times that are stable to symmetry-preserving perturbations and not the result of integrability.

10.
Phys Rev Lett ; 123(24): 246603, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31922879

RESUMEN

Two conducting quantum systems coupled only via interactions can exhibit the phenomenon of Coulomb drag, in which a current passed through one layer can pull a current along in the other. However, in systems with particle-hole symmetry-for instance, the half filled Hubbard model or graphene near the Dirac point-the Coulomb drag effect vanishes to leading order in the interaction. Its thermal analog, whereby a thermal current in one layer pulls a thermal current in the other, does not vanish and is indeed the dominant form of drag in particle-hole symmetric systems. By studying a quantum quench, we show that thermal drag, unlike charge drag, displays a non-Fermi's golden rule growth at short times due to a logarithmic scattering singularity generic to one dimension. Exploiting the integrability of the Hubbard model, we obtain the long-time limit of the quench for weak interactions. Finally, we comment on thermal drag effects in higher dimensional systems.

11.
Phys Rev Lett ; 118(22): 226601, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621998

RESUMEN

In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

12.
Science ; 355(6321)2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28082534

RESUMEN

Sr2RuO4 is an unconventional superconductor that has attracted widespread study because of its high purity and the possibility that its superconducting order parameter has odd parity. We study the dependence of its superconductivity on anisotropic strain. Applying uniaxial pressures of up to ~1 gigapascals along a 〈100〉 direction (a axis) of the crystal lattice results in the transition temperature (Tc) increasing from 1.5 kelvin in the unstrained material to 3.4 kelvin at compression by ≈0.6%, and then falling steeply. Calculations give evidence that the observed maximum Tc occurs at or near a Lifshitz transition when the Fermi level passes through a Van Hove singularity, and open the possibility that the highly strained, Tc = 3.4 K Sr2RuO4 has an even-parity, rather than an odd-parity, order parameter.

13.
Phys Rev Lett ; 115(8): 087003, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26340202

RESUMEN

We show from a weak-coupling microscopic calculation that the most favored chiral superconducting order parameter in Sr2RuO4 has a Chern number of |C|=7. The two dominant components of this order parameter are given by sin(3k(x))+isin(3k(y)) and sin(k(x))cos(k(y))+isin(k(y))cos(k(x)) and lie in the same irreducible representation E(u) of the tetragonal point group as the usually assumed gap function, sin(k(x))+isin(k(y)). While the latter gap function leads to C=1, the two former lead to C=-7, which is also allowed for an E_{u} gap function since the tetragonal symmetry only fixes C modulo 4. Since it was shown that the edge currents of a |C|>1 superconductor vanish exactly in the continuum limit, and can be strongly reduced on the lattice, this form of order parameter could help resolve the conflict between experimental observation of time-reversal symmetry breaking and yet the absence of observed edge currents in Sr2RuO4.

14.
Phys Rev Lett ; 109(24): 246805, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23368364

RESUMEN

We show how the phases of interacting particles in topological flat bands, known as fractional Chern insulators, can be adiabatically connected to incompressible fractional quantum Hall liquids in the lowest Landau level of an externally applied magnetic field. Unlike previous evidence suggesting the similarity of these systems, our approach enables a formal proof of the equality of their topological orders, and furthermore this proof robustly extends to the thermodynamic limit. We achieve this result using the hybrid Wannier orbital basis proposed by Qi [Phys. Rev. Lett. 107, 126803 (2011)] in order to construct interpolation Hamiltonians that provide continuous deformations between the two models. We illustrate the validity of our approach for the ground state of bosons in the half filled Chern band of the Haldane model, showing that it is adiabatically connected to the ν=1/2 Laughlin state of bosons in the continuum fractional quantum Hall problem.


Asunto(s)
Modelos Teóricos , Teoría Cuántica , Partículas Elementales , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...