Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38082581

RESUMEN

Bioimpedance analysis can be used for remote monitoring of volume status for various conditions such as congestive heart failure. The measurement is typically performed with four electrodes, two of them driving an alternating current through the tissue and the other two sensing the resulting voltage. Issues with the measurement setup such as stray capacitance or electrode mismatch can cause artifacts that impact Cole parameters used for volume estimation. While previous research has focused on mitigating high frequency artifacts, little research has been done to understand the cause and impact of low frequency artifacts, nor how to mitigate the impact of these artifacts. These artifacts are most prevalent in wearable segmental bioimpedance systems, especially using textile electrodes, so future research in this area is needed for these systems to be viable. The present study uses simulations to identify the potential sources of low frequency artifacts, and explores techniques to minimize the impact of these artifacts on Cole parameters. Theoretical analysis and simulations show that the mismatch of the voltage electrodes causes artifacts at low frequency. These artifacts are highly dependent on the impedance of the negative current injecting electrode. Averaging measurements of the mismatch of both voltage electrodes and limiting high frequency measurements to 200 kHz can reduce errors due to these artifacts from over 137% to less than 3%. The results of this study suggest the impact of low frequency artifacts can be significantly reduced, enabling future development of wearable bioimpedance systems.Clinical relevance- Reducing the impact of low frequency artifacts on Cole parameter estimation enables wearable segmental bioimpedance systems that can be used for remote monitoring of volume status in home environments.


Asunto(s)
Artefactos , Textiles , Impedancia Eléctrica , Electrodos , Capacidad Eléctrica
2.
J Biol Eng ; 16(1): 27, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229846

RESUMEN

BACKGROUND: Electrical stimulation is a novel tool to promote the differentiation and proliferation of precursor cells. In this work we have studied the effects of direct current (DC) electrical stimulation on neuroblastoma (N2a) and osteoblast (MC3T3) cell lines as a model for nervous and bone tissue regeneration, respectively. We have developed the electronics and encapsulation of a proposed stimulation system and designed a setup and protocol to stimulate cell cultures. METHODS: Cell cultures were subjected to several assays to assess the effects of electrical stimulation on them. N2a cells were analyzed using microscope images and an inmunofluorescence assay, differentiated cells were counted and neurites were measured. MC3T3 cells were subjected to an AlamarBlue assay for viability, ALP activity was measured, and a real time PCR was carried out. RESULTS: Our results show that electrically stimulated cells had more tendency to differentiate in both cell lines when compared to non-stimulated cultures, paired with a promotion of neurite growth and polarization in N2a cells and an increase in proliferation in MC3T3 cell line. CONCLUSIONS: These results prove the effectiveness of electrical stimulation as a tool for tissue engineering and regenerative medicine, both for neural and bone injuries. Bone progenitor cells submitted to electrical stimulation have a higher tendency to differentiate and proliferate, filling the gaps present in injuries. On the other hand, neuronal progenitor cells differentiate, and their neurites can be polarized to follow the electric field applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...