Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(19): 3546-3557.e8, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802027

RESUMEN

Nonstructural protein 1 (Nsp1) produced by coronaviruses inhibits host protein synthesis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp1 C-terminal domain was shown to bind the ribosomal mRNA channel to inhibit translation, but it is unclear whether this mechanism is broadly used by coronaviruses, whether the Nsp1 N-terminal domain binds the ribosome, or how Nsp1 allows viral RNAs to be translated. Here, we investigated Nsp1 from SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and Bat-Hp-CoV coronaviruses using structural, biophysical, and biochemical experiments, revealing a conserved role for the C-terminal domain. Additionally, the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A accommodation. Structure-based experiments demonstrated the importance of decoding center interactions in all three coronaviruses and showed that the same regions of Nsp1 are necessary for the selective translation of viral RNAs. Our results provide a mechanistic framework to understand how Nsp1 controls preferential translation of viral RNAs.


Asunto(s)
COVID-19 , Quirópteros , Animales , Quirópteros/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Dominios Proteicos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398176

RESUMEN

Nonstructural protein 1 (Nsp1) produced by coronaviruses shuts down host protein synthesis in infected cells. The C-terminal domain of SARS-CoV-2 Nsp1 was shown to bind to the small ribosomal subunit to inhibit translation, but it is not clear whether this mechanism is broadly used by coronaviruses, whether the N-terminal domain of Nsp1 binds the ribosome, or how Nsp1 specifically permits translation of viral mRNAs. Here, we investigated Nsp1 from three representative Betacoronaviruses - SARS-CoV-2, MERS-CoV, and Bat-Hp-CoV - using structural, biophysical, and biochemical assays. We revealed a conserved mechanism of host translational shutdown across the three coronaviruses. We further demonstrated that the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A binding. Structure-based biochemical experiments identified a conserved role of these inhibitory interactions in all three coronaviruses and showed that the same regions of Nsp1 are responsible for the preferential translation of viral mRNAs. Our results provide a mechanistic framework to understand how Betacoronaviruses overcome translational inhibition to produce viral proteins.

3.
Science ; 380(6651): 1238-1243, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37347872

RESUMEN

N-terminal methionine excision from newly synthesized proteins, catalyzed cotranslationally by methionine aminopeptidases (METAPs), is an essential and universally conserved process that plays a key role in cell homeostasis and protein biogenesis. However, how METAPs interact with ribosomes and how their cleavage specificity is ensured is unknown. We discovered that in eukaryotes the nascent polypeptide-associated complex (NAC) controls ribosome binding of METAP1. NAC recruits METAP1 using a long, flexible tail and provides a platform for the formation of an active methionine excision complex at the ribosomal tunnel exit. This mode of interaction ensures the efficient excision of methionine from cytosolic proteins, whereas proteins targeted to the endoplasmic reticulum are spared. Our results suggest a broader mechanism for how access of protein biogenesis factors to translating ribosomes is controlled.


Asunto(s)
Metionina , Metionil Aminopeptidasas , Biosíntesis de Proteínas , Metionina/metabolismo , Metionil Aminopeptidasas/metabolismo , Ribosomas/metabolismo , Humanos , Animales
4.
Science ; 380(6644): 531-536, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141370

RESUMEN

The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.


Asunto(s)
Codón de Terminación , Mitocondrias , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos , Humanos , Microscopía por Crioelectrón , Mitocondrias/genética , Mitocondrias/metabolismo , Factores de Terminación de Péptidos/química , Conformación Proteica
5.
Science ; 375(6583): 839-844, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35201867

RESUMEN

The nascent polypeptide-associated complex (NAC) interacts with newly synthesized proteins at the ribosomal tunnel exit and competes with the signal recognition particle (SRP) to prevent mistargeting of cytosolic and mitochondrial polypeptides to the endoplasmic reticulum (ER). How NAC antagonizes SRP and how this is overcome by ER targeting signals are unknown. Here, we found that NAC uses two domains with opposing effects to control SRP access. The core globular domain prevented SRP from binding to signal-less ribosomes, whereas a flexibly attached domain transiently captured SRP to permit scanning of nascent chains. The emergence of an ER-targeting signal destabilized NAC's globular domain and facilitated SRP access to the nascent chain. These findings elucidate how NAC hands over the signal sequence to SRP and imparts specificity of protein localization.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Señales de Clasificación de Proteína , Partícula de Reconocimiento de Señal/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Ubiquitina/metabolismo
6.
Nat Commun ; 12(1): 3671, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135320

RESUMEN

Mitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors. We discover that the NSUN4-MTERF4 dimer plays a critical role in the process by stabilizing the 16S rRNA in a conformation that exposes the functionally important regions of rRNA for modification by the MRM2 methyltransferase and quality control interactions with the conserved mitochondrial GTPase MTG2 that contacts the sarcin-ricin loop and the immature active site. The successive action of these factors leads to the formation of the peptidyl transferase active site of the mitoribosome and the folding of the surrounding rRNA regions responsible for interactions with tRNAs and the small ribosomal subunit.


Asunto(s)
Ribosomas Mitocondriales/química , Peptidil Transferasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Conformación de Ácido Nucleico , Peptidil Transferasas/metabolismo , Multimerización de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/metabolismo
7.
Science ; 372(6548): 1306-1313, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34029205

RESUMEN

Programmed ribosomal frameshifting is a key event during translation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome that allows synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here, we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal messenger RNA (mRNA) channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.


Asunto(s)
Sistema de Lectura Ribosómico , ARN Viral/genética , Ribosomas/ultraestructura , SARS-CoV-2/genética , Proteínas Virales/biosíntesis , Animales , Antivirales/farmacología , Codón de Terminación , ARN Polimerasa Dependiente de ARN de Coronavirus/biosíntesis , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Microscopía por Crioelectrón , Fluoroquinolonas/farmacología , Sistema de Lectura Ribosómico/efectos de los fármacos , Genoma Viral , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Pliegue de Proteína , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
8.
Mol Cell ; 81(12): 2566-2582.e6, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33878294

RESUMEN

The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.


Asunto(s)
Mitocondrias/fisiología , Ribosomas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Animales , Hidrolasas de Éster Carboxílico , Codón de Terminación , Microscopía por Crioelectrón/métodos , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/genética , Factor G de Elongación Peptídica/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo
9.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33158864

RESUMEN

The protein kinase mammalian target of rapamycin (mTOR) is the central regulator of cell growth. Aberrant mTOR signaling is linked to cancer, diabetes, and neurological disorders. mTOR exerts its functions in two distinct multiprotein complexes, mTORC1 and mTORC2. Here, we report a 3.2-Å resolution cryo-EM reconstruction of mTORC2. It reveals entangled folds of the defining Rictor and the substrate-binding SIN1 subunits, identifies the carboxyl-terminal domain of Rictor as the source of the rapamycin insensitivity of mTORC2, and resolves mechanisms for mTORC2 regulation by complex destabilization. Two previously uncharacterized small-molecule binding sites are visualized, an inositol hexakisphosphate (InsP6) pocket in mTOR and an mTORC2-specific nucleotide binding site in Rictor, which also forms a zinc finger. Structural and biochemical analyses suggest that InsP6 and nucleotide binding do not control mTORC2 activity directly but rather have roles in folding or ternary interactions. These insights provide a firm basis for studying mTORC2 signaling and for developing mTORC2-specific inhibitors.


Asunto(s)
Proteínas Portadoras , Serina-Treonina Quinasas TOR , Proteínas Portadoras/metabolismo , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Nucleótidos/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
10.
Nat Struct Mol Biol ; 27(11): 1094, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33082564

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Struct Mol Biol ; 27(10): 959-966, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32908316

RESUMEN

The SARS-CoV-2 non-structural protein 1 (Nsp1), also referred to as the host shutoff factor, suppresses host innate immune functions. By combining cryo-electron microscopy and biochemistry, we show that SARS-CoV-2 Nsp1 binds to the human 40S subunit in ribosomal complexes, including the 43S pre-initiation complex and the non-translating 80S ribosome. The protein inserts its C-terminal domain into the mRNA channel, where it interferes with mRNA binding. We observe translation inhibition in the presence of Nsp1 in an in vitro translation system and in human cells. Based on the high-resolution structure of the 40S-Nsp1 complex, we identify residues of Nsp1 crucial for mediating translation inhibition. We further show that the full-length 5' untranslated region of the genomic viral mRNA stimulates translation in vitro, suggesting that SARS-CoV-2 combines global inhibition of translation by Nsp1 with efficient translation of the viral mRNA to allow expression of viral genes.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Regiones no Traducidas 5' , Betacoronavirus/genética , Microscopía por Crioelectrón , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
12.
Science ; 365(6458): 1144-1149, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31515389

RESUMEN

Mitochondrial ribosomes (mitoribosomes) are large ribonucleoprotein complexes that synthesize proteins encoded by the mitochondrial genome. An extensive cellular machinery responsible for ribosome assembly has been described only for eukaryotic cytosolic ribosomes. Here we report that the assembly of the small mitoribosomal subunit in Trypanosoma brucei involves a large number of factors and proceeds through the formation of assembly intermediates, which we analyzed by using cryo-electron microscopy. One of them is a 4-megadalton complex, referred to as the small subunit assemblosome, in which we identified 34 factors that interact with immature ribosomal RNA (rRNA) and recognize its functionally important regions. The assembly proceeds through large-scale conformational changes in rRNA coupled with successive incorporation of mitoribosomal proteins, providing an example for the complexity of the ribosomal assembly process in mitochondria.


Asunto(s)
Proteínas Mitocondriales/ultraestructura , Ribosomas Mitocondriales/ultraestructura , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura , Trypanosoma brucei brucei/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Interferencia de ARN , Estabilidad del ARN
13.
Sci Rep ; 9(1): 5634, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948752

RESUMEN

Oxazolidinones are synthetic antibiotics used for treatment of infections caused by Gram-positive bacteria. They target the bacterial protein synthesis machinery by binding to the peptidyl transferase centre (PTC) of the ribosome and interfering with the peptidyl transferase reaction. Cadazolid is the first member of quinoxolidinone antibiotics, which are characterized by combining the pharmacophores of oxazolidinones and fluoroquinolones, and it is evaluated for treatment of Clostridium difficile gastrointestinal infections that frequently occur in hospitalized patients. In vitro protein synthesis inhibition by cadazolid was shown in Escherichia coli and Staphylococcus aureus, including an isolate resistant against linezolid, the prototypical oxazolidinone antibiotic. To better understand the mechanism of inhibition, we determined a 3.0 Å cryo-electron microscopy structure of cadazolid bound to the E. coli ribosome in complex with mRNA and initiator tRNA. Here we show that cadazolid binds with its oxazolidinone moiety in a binding pocket in close vicinity of the PTC as observed previously for linezolid, and that it extends its unique fluoroquinolone moiety towards the A-site of the PTC. In this position, the drug inhibits protein synthesis by interfering with the binding of tRNA to the A-site, suggesting that its chemical features also can enable the inhibition of linezolid-resistant strains.


Asunto(s)
Oxazolidinonas/metabolismo , Oxazolidinonas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Acetamidas/farmacología , Antibacterianos/farmacología , Infecciones por Clostridium/tratamiento farmacológico , Microscopía por Crioelectrón/métodos , Escherichia coli/metabolismo , Fluoroquinolonas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Peptidil Transferasas/antagonistas & inhibidores , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo
14.
Elife ; 72018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29424687

RESUMEN

The mammalian target of rapamycin (mTOR) is a key protein kinase controlling cellular metabolism and growth. It is part of the two structurally and functionally distinct multiprotein complexes mTORC1 and mTORC2. Dysregulation of mTOR occurs in diabetes, cancer and neurological disease. We report the architecture of human mTORC2 at intermediate resolution, revealing a conserved binding site for accessory proteins on mTOR and explaining the structural basis for the rapamycin insensitivity of the complex.


Asunto(s)
Microscopía por Crioelectrón , Diana Mecanicista del Complejo 2 de la Rapamicina/química , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
15.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459436

RESUMEN

Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA Using cryo-electron microscopy (cryo-EM), we have determined the structure of a yeast cytoplasmic pre-40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre-rRNA adopts a highly distorted conformation of its 3' major and 3' minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre-40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle toward the mature form capable of engaging in translation.


Asunto(s)
Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Citoplasma , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/ultraestructura , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...