Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 151: 457-467, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35933099

RESUMEN

Changes in physical properties of Tenebrio molitor and Tribolium castaneum elytra (hardened forewings) were studied to understand how the development of microstructure and chemical interactions determine cuticle mechanical properties. Analysis of these properties supports a model in which cuticular material is continuously secreted from epidermal cells to produce an extracellular matrix so that the outermost layers mature first. It is hypothesized that enzymatic crosslinking and pigmentation reactions along with dehydration help to stabilize the protein-chitin network within the initial layers of cuticle shortly after eclosion. Mature layers are proposed to bear most of the mechanical loads. The frequency dependence of the storage modulus and the tan δ values decreased during the beginning of maturation, reaching constant values after 48 h post-eclosion. A decrease of tan δ indicates an increase in crosslinking of the material. The water content declined from 75% to 31%, with a significant portion lost from within the open spaces between the dorsal and ventral cuticular layers. Dehydration had a less significant influence than protein crosslinking on the mechanical properties of the elytron during maturation. When Tribolium cuticular protein TcCP30 expression was decreased by RNAi, the tan δ and frequency dependence of E' of the elytron did not change during maturation. This indicates that TcCP30 plays a role in the crosslinking process of the beetle's exoskeleton. This study was inspired by previous work on biomimetic multicomponent materials and helps inform future work on creating robust lightweight materials derived from natural sources. STATEMENT OF SIGNIFICANCE: Examination of changes in the physical properties of the elytra (hardened forewings) of two beetle species advanced understanding of how the molecular interactions influence the mechanical properties of the elytra. Physical characterization, including dynamic mechanical analysis, determined that the outer portion of the elytra matured first, while epidermal cells continued to secrete reactive components until the entire structure reached maturation. RNA interference was used to identify the role of a key protein in the elytra. Suppression of its expression reduced the formation of crosslinked polymeric components in the elytra. Identifying the molecular interactions in the matrix of proteins and polysaccharides in the elytra together with their hierarchical architecture provides important design concepts in the development of biomimetic materials.


Asunto(s)
Escarabajos , Tribolium , Animales , Quitina , Deshidratación , Tribolium/genética , Tribolium/metabolismo , Agua
2.
Gels ; 7(3)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209543

RESUMEN

Tough hydrogels were made by hydrolysis of a neutral interpenetrating network (IPN) of poly (N-vinyl formamide) PNVF and polyacrylamide (PAAm) networks to form an IPN of polyvinylamine (PVAm) and poly (acrylic acid) (PAAc) capable of intermolecular ionic complexation. Single network (SN) PAAm and SN PNVF have similar chemical structures, parameters and physical properties. The hypothesis was that starting with neutral IPN networks of isomeric monomers that hydrolyze to comparable extents under similar conditions would lead to formation of networks with minimal phase separation and maximize potential for charge-charge interactions of the networks. Sequential IPNs of both PNVF/PAAm and PAAm/PNVF were synthesized and were optically transparent, an indication of homogeneity at submicron length scales. Both IPNs were hydrolyzed in base to form PVAm/PAAc and PAAc/PVAm IPNs. These underwent ~5-fold or greater decrease in swelling at intermediate pH values (3-6), consistent with the hypothesis of intermolecular charge complexation, and as hypothesized, the globally neutral, charge-complexed gel states showed substantial increases in failure properties upon compression, including an order of magnitude increases in toughness when compared to their unhydrolyzed states or the swollen states at high or low pH values. There was no loss of mechanical performance upon repeated compression over 95% strain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA