Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Food Chem ; 460(Pt 1): 140477, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047470

RESUMEN

To evaluate the potential differences in the propensity of ß-casein A1 (ß-CNA1) and A2 (ß-CNA2) from bovine milk to release health-relevant ß-casomorphins (BCMs), food-derived peptides were monitored over time in the blood of eight human volunteers who consumed milk containing both protein variants. Liquid chromatography coupled with high resolution tandem mass spectrometry revealed interindividual variability of milk peptidomic profiles in human blood. BCMs were not detected, whereas BCM precursors originating from both ß-CNA1 and ß-CNA2 were ascertained, with ß-CNA2-derived peptides showing a slightly greater susceptibility to proteolysis. Ten synthetic peptides mimicking circulating BCM precursors from ß-CNA1 and ß-CNA2, which were incubated ex vivo with the blood of two volunteers, showed comparable potential to generate BCMs. The formation of BCMs seemed to depend mainly on the size of the BCM precursors and less on the presence of His67 or Pro67. These findings challenge the belief that BCMs are released exclusively from ß-CNA1 and support the nutritional safety of conventional milk, informing health policies regarding milk consumption.

2.
Biotechnol Lett ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066957

RESUMEN

OBJECTIVES: The aim of this work was to rapidly produce in plats two recombinant antigens (RBDw-Fc and RBDo-Fc) containing the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 variants Wuhan and Omicron as fusion proteins to the Fc portion of a murine IgG2a antibody constant region (Fc). RESULTS: The two recombinant antigens were expressed in Nicotiana benthamiana plants, engineered to avoid the addition of N-linked plant-typical sugars, through vacuum agroinfiltration and showed comparable purification yields (about 35 mg/kg leaf fresh weight). CONCLUSIONS: Their Western blotting and Coomassie staining evidenced the occurrence of major in planta proteolysis in the region between the RBD and Fc, which was particularly evident in RBDw-Fc, the only antigen bearing the HRV 3C cysteine protease recognition site. The two RBD N-linked glycosylation sites showed very homogeneous profiles free from plant-typical sugars, with the most abundant glycoform represented by the complex sugar GlcNAc4Man3. Both antigens were specifically recognised in Western Blot analysis by the anti-SARS-CoV-2 human neutralizing monoclonal antibody J08-MUT and RBDw-Fc was successfully used in competitive ELISA experiments for binding to the angiotensin-converting enzyme 2 receptor to verify the neutralizing capacity of the serum from vaccinated patients. Both SARS-Cov-2 antigens fused to a murine Fc region were rapidly and functionally produced in plants with potential applications in diagnostics.

3.
J Nutr Biochem ; 133: 109706, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053859

RESUMEN

The oral administration of probiotics is nowadays recognized as a strategy to treat or prevent the consequences of unhealthy dietary habits. Here we analyze and compare the effects of the oral administration of vegetative cells or spores of Shouchella clausii SF174 in counteracting gut dysfunctions induced by 6 weeks of high fructose intake in a rat model. Gut microbiota composition, tight junction proteins, markers of inflammation and redox homeostasis were evaluated in ileum and colon in rats fed fructose rich diet and supplemented with cells or spores of Shouchella clausii SF174. Our results show that both spores and cells of SF174 were effective in preventing the fructose-induced metabolic damage to the gut, namely establishment of "leaky gut", inflammation and oxidative damage, thus preserving gut function. Our results also suggest that vegetative cells and germination-derived cells metabolize part of the ingested fructose at the ileum level.

4.
Biofactors ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801155

RESUMEN

The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.

5.
Sci Rep ; 14(1): 12096, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802434

RESUMEN

Biostimulants are heterogeneous products designed to support plant development and to improve the yield and quality of crops. Here, we focused on the effects of triacontanol, a promising biostimulant found in cuticle waxes, on tomato growth and productivity. We examined various phenological traits related to vegetative growth, flowering and fruit yield, the metabolic profile of fruits, and the response of triacontanol-treated plants to salt stress. Additionally, a proteomic analysis was conducted to clarify the molecular mechanisms underlying triacontanol action. Triacontanol application induced advanced and increased blooming without affecting plant growth. Biochemical analyses of fruits showed minimal changes in nutritional properties. The treatment also increased the germination rate of seeds by altering hormone homeostasis and reduced salt stress-induced damage. Proteomics analysis of leaves revealed that triacontanol increased the abundance of proteins related to development and abiotic stress, while down-regulating proteins involved in biotic stress resistance. The proteome of the fruits was not significantly affected by triacontanol, confirming that biostimulation did not alter the nutritional properties of fruits. Overall, our findings provide evidence of the effects of triacontanol on growth, development, and stress tolerance, shedding light on its mechanism of action and providing new insights into its potential in agricultural practices.


Asunto(s)
Alcoholes Grasos , Frutas , Solanum lycopersicum , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Alcoholes Grasos/farmacología , Frutas/efectos de los fármacos , Frutas/metabolismo , Frutas/química , Proteómica/métodos , Fenotipo , Proteínas de Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Germinación/efectos de los fármacos , Estrés Salino , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/crecimiento & desarrollo
6.
Curr Res Food Sci ; 8: 100767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774268

RESUMEN

Maillard reaction readily takes place in dairy products because of the association between thermal treatments, extended storage and the matrix composition. Along with the impairment of protein digestion, the formation of glycation and α-dicarbonyl compounds is a concern for quality attributes of whey proteins when used as ingredients. In this paper, we outline the capacity of brewer's spent grain melanoidins in reducing the accumulation of α-dicarbonyl compounds, thus controlling the formation of dietary advanced glycation end-products in accelerated shelf life at 35 °C. Results revealed that brewer's spent grain melanoidins targeted methylglyoxal and glyoxal reactivity leading to the reduction of N-ε-carboxymethyllysine and methylglyoxal-hydroimidazolone up to 27 and 60%, respectively. We here describe that the presence of melanoidins is instrumental in limiting the undesired effects of α-dicarbonyl compounds on whey proteins.

7.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660488

RESUMEN

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Asunto(s)
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas Protozoarias , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/análisis , Microscopía Electrónica de Transmisión , Animales , Criptosporidiosis/parasitología , Humanos , Proteoma/análisis , Proteómica , Citometría de Flujo
8.
Plant Physiol Biochem ; 210: 108609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615442

RESUMEN

Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.


Asunto(s)
Micrococcaceae , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Micrococcaceae/metabolismo , Micrococcaceae/genética , Microbiología del Suelo , Regulación de la Expresión Génica de las Plantas
9.
Foods ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38540825

RESUMEN

Edible plant and fruit-derived nanovesicles (NVs) are membrane-enclosed particles with round-shape morphology and signaling functions, which resemble mammalian cell-derived extracellular vesicles. These NVs can transmit cross-kingdom signals as they contain bioactive molecules and exert biological effects on mammalian cells. Their properties and stability in the gastrointestinal tract suggest NVs as a promising nutraceutical tool. In this study, we have demonstrated for the first time the presence of NVs in olive vegetation water (OVW), a waste by-product generated during olive oil production. Biophysical characterization by scanning electron microscopy, cryo-transmission electron microscopy, and nanoparticle tracking analysis revealed the presence in OVW of NVs having size and morphology similar to that of vesicles isolated from edible plants. Integrated lipidomic, metabolomic, and proteomic analyses showed that OVW-NVs carry a set of lipids, metabolites and proteins which have recognized antioxidant and anti-inflammatory activities. The nature of biomolecules identified in OVW-NVs suggests that these vesicles could exert beneficial effects on mammalian cells and could be used in the nutraceutical and food industries. The successful isolation of OVW-NVs and the characterization of their features strengthen the idea that agricultural waste might represent a source of NVs having features similar to NVs isolated from edible plants/fruits.

10.
Methods Mol Biol ; 2758: 241-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549018

RESUMEN

Hen eggs and the corresponding food products are essential components of human diet. In addition to supplying basic nutrients, they contain functional peptides that are released in vivo within the intact raw material following physiological proteolytic events affecting specific proteins or derive from technological processing of albumen and yolk fractions as a result of the dedicated use of proteases from plant and microbial sources. Besides their potential importance for functional applications, peptides released under physiological conditions in intact egg can be used as markers of product storage and deterioration. Therefore, characterization and quantitation of peptides in egg and egg-derived products can be used to implement evaluation of potential bioactivities as well as to assess food product qualitative characteristics. Here, we provide dedicated information on extraction, identification, and quantitative analysis of peptides from albumen and yolk plasma; nano-liquid chromatography-mass spectrometry combined with bioinformatic analysis of resulting raw data by different software tools allowed to assign molecules based on database searching and to evaluate their relative quantity in different samples.


Asunto(s)
Pollos , Yema de Huevo , Animales , Femenino , Humanos , Pollos/fisiología , Huevos/análisis , Albúminas/análisis , Péptidos/análisis , Control de Calidad , Proteómica
11.
Commun Biol ; 7(1): 208, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379085

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Adulto , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Regulación hacia Abajo , Endocitosis , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Ubiquitina/metabolismo
12.
Foods ; 12(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372609

RESUMEN

Mozzarella di Bufala Campana (MdBC) cheese is a Protected Designation of Origin (PDO) product that is important for the economy and cultural heritage of the Campania region. Food fraud can undermine consumers' trust in this dairy product and harm the livelihood of local producers. The current methods for detecting adulteration in MdBC cheese due to the use of buffalo material from foreign countries could exhibit limitations associated with the required use of expensive equipment, time-consuming procedures, and specialized personnel. To address these limits here, we propose a rapid, reliable, and cost-effective genotyping method that can detect foreign buffalo milk in a counterpart from the PDO area and in MdBC cheese, ensuring the quality and authenticity of the latter dairy product. This method is based on dedicated allele-specific and single-tube heminested polymerase chain reaction procedures. By using allele-specific primers that are designed to detect the nucleotide g.472G>C mutation of the CSN1S1Bbt allele, we distinguished an amplicon of 330 bp in the amplification product of DNA when extracted from milk and cheese, which is specific to the material originating from foreign countries. By spiking foreign milk samples with known amounts of the counterpart from the PDO area, the sensitivity of this assay was determined to be 0.01% v/v foreign to PDO milk. Based on a rough estimate of its simplicity, reliability, and cost, this method could be a valuable tool for identifying adulterated buffalo PDO dairy products.

13.
J Agric Food Chem ; 71(26): 10212-10225, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37341524

RESUMEN

To investigate thiol-disulfide interchange reactions in heated milk yielding non-native intramolecular rearranged and intermolecular cross-linked proteins, a proteomic study based on nanoLC-ESI-Q-Orbitrap-MS/MS and dedicated bioinformatics was accomplished. Raw milk samples heated for different times and various commercial dairy products were analyzed. Qualitative experiments on tryptic digests of resolved protein mixtures assigned the corresponding disulfide-linked peptides. Results confirmed the limited data available on few milk proteins, generated the widest inventory of components (63 in number) involved in thiol-disulfide exchange processes, and provided novel structural information on S-S-bridged molecules. Quantitative experiments on unresolved protein mixtures from both sample typologies estimated the population of molecules associated with thiol-disulfide reshuffling processes. Disulfide-linked peptides associated with native intramolecular S-S bonds generally showed a progressive reduction depending on heating time/harshness, whereas those related to specific non-native intramolecular/intermolecular ones showed an opposite quantitative trend. This was associated with a temperature-dependent augmented reactivity of definite native protein thiols and S-S bridges, which determined the formation of non-native rearranged monomers and cross-linked oligomers. Results provided novel information for possibly linking the nature and extent of thiol-disulfide exchange reactions in heated milk proteins to the corresponding functional and technological characteristics, with possible implications on food digestibility, allergenicity, and bioactivity.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteínas de la Leche/química , Péptidos , Compuestos de Sulfhidrilo/química , Disulfuros/química
14.
J Proteomics ; 283-284: 104928, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37207814

RESUMEN

Tuberous sclerosis complex (TSC) is a rare, multisystem genetic disorder that leads to the development of benign tumors in multiple organs and neurological symptoms. TSC clinical manifestations show a great heterogenicity, with most patients presenting severe neuropsychiatric and neurological disorders. TSC is caused by loss-of-function mutations in either TSC1 or TSC2 genes, leading to overexpression of the mechanistic target of rapamycin (mTOR) and, consequently, abnormal cellular growth, proliferation and differentiation as well as to cell migration defects. Beside the growing interest, TSC remains a disorder poorly understood, with limited perspectives in the field of therapeutic strategies. Here we used murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene as a TSC model to unravel novel molecular aspects of the pathophysiology of this disease. 2D-DIGE-based proteomic analysis detected 55 differently represented spots in Tsc1-deficient cells, compared to wild-type counterparts, which were associated with 36 protein entries after corresponding trypsinolysis and nanoLC-ESI-Q-Orbitrap-MS/MS analysis. Proteomic results were validated using various experimental approaches. Bioinformatics associated differently represented proteins with oxidative stress and redox pathways, methylglyoxal biosynthesis, myelin sheath, protein S-nitrosylation and carbohydrate metabolism. Because most of these cellular pathways have already been linked to TSC features, these results were useful to clarify some molecular aspects of TSC etiopathogenesis and suggested novel promising therapeutic protein targets. SIGNIFICANCE: Tuberous Sclerosis Complex (TSC) is a multisystemic disorder caused by inactivating mutations of TSC1 or TSC2 genes, which induce overactivation of the mTOR component. The molecular mechanisms underlying the pathogenesis of TSC remain unclear, probably due to complexity of mTOR signaling network. To have a picture of protein abundance changes occurring in TSC disorder, murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene were used as a model of disease. Thus, Tsc1-deficient SVZ NSPCs and wild-type cells were comparatively evaluated by proteomics. This analysis evidenced changes in the abundance of proteins involved in oxidative/nitrosative stress, cytoskeleton remodelling, neurotransmission, neurogenesis and carbohydrate metabolism. These proteins might clarify novel molecular aspects of TSC etiopathogenesis and constitute putative molecular targets for novel therapeutic management of TSC-related disorders.


Asunto(s)
Células-Madre Neurales , Esclerosis Tuberosa , Ratones , Humanos , Animales , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Serina-Treonina Quinasas TOR/metabolismo
15.
Antioxid Redox Signal ; 39(7-9): 411-431, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36855946

RESUMEN

Aims: The existence of modified ribonucleotide monophosphates embedded in genomic DNA, as a consequence of oxidative stress conditions, including 8-oxo-guanosine and ribose monophosphate abasic site (rAP), has been recently highlighted by several works and associated with oxidative stress conditions. Although human apurinic-apyrimidinic endodeoxyribonuclease 1 (APE1), a key enzyme of the base-excision repair pathway, repairs rAP sites and canonical deoxyribose monophosphate abasic sites with similar efficiency, its incision-repairing activity on 8-oxo-guanosine is very weak. The aims of this work were to: (i) identify proteins able to specifically bind 8-oxo-guanosine embedded in DNA and promote APE1 endoribonuclease activity on this lesion, and (ii) characterize the molecular and biological relevance of this interaction using human cancer cell lines. Results: By using an unbiased proteomic approach, we discovered that the AU-rich element RNA-binding protein 1 (AUF1) actively recognizes 8-oxo-guanosine and stimulates the APE1 enzymatic activity on this DNA lesion. By using orthogonal approaches, we found that: (i) the interaction between AUF1 and APE1 is modulated by H2O2-treatment; (ii) depletion of APE1 and AUF1 causes the accumulation of single- and double- strand breaks; and (iii) both proteins are involved in modulating the formation of DNA:RNA hybrids. Innovation: These results establish unexpected functions of AUF1 in modulating genome stability and improve our knowledge of APE1 biology with respect to 8-oxo-guanosine embedded in DNA. Conclusion: By showing a novel function of AUF1, our findings shed new light on the process of genome stability in mammalian cells toward oxidative stress-related damages. Antioxid. Redox Signal. 39, 411-431.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Animales , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Peróxido de Hidrógeno , Proteómica , ADN/metabolismo , Daño del ADN , Endorribonucleasas/metabolismo , Inestabilidad Genómica , Mamíferos/metabolismo
16.
Front Plant Sci ; 14: 1093074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794209

RESUMEN

Together with phenological and genomic approaches, gel-based and label-free proteomic as well metabolomic procedures were separately applied to plants to highlight differences between ecotypes, to estimate genetic variability within/between organism populations, or to characterize specific mutants/genetically modified lines at metabolic level. To investigate the possible use of tandem mass tag (TMT)-based quantitative proteomics in the above-mentioned contexts and based on the absence of combined proteo-metabolomic studies on Diospyros kaki cultivars, we here applied integrated proteomic and metabolomic approaches to fruits from Italian persimmon ecotypes with the aim to characterize plant phenotypic diversity at molecular level. We identified 2255 proteins in fruits, assigning 102 differentially represented components between cultivars, including some related to pomological, nutritional and allergenic characteristics. Thirty-three polyphenols were also identified and quantified, which belong to hydroxybenzoic acid, flavanol, hydroxycinnamic acid, flavonol, flavanone and dihydrochalcone sub-classes. Heat-map representation of quantitative proteomic and metabolomic results highlighted compound representation differences in various accessions, whose elaboration through Euclidean distance functions and other linkage methods defined dendrograms establishing phenotypic relationships between cultivars. Principal component analysis of proteomic and metabolomic data provided clear information on phenotypic differences/similarities between persimmon accessions. Coherent cultivar association results were observed between proteomic and metabolomic data, emphasizing the utility of integrating combined omic approaches to identify and validate phenotypic relationships between ecotypes, and to estimate corresponding variability and distance. Accordingly, this study describes an original, combined approach to outline phenotypic signatures in persimmon cultivars, which may be used for a further characterization of other ecotypes of the same species and an improved description of nutritional characteristics of corresponding fruits.

17.
Cell Death Dis ; 14(2): 116, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781840

RESUMEN

FKBP51 plays a relevant role in sustaining cancer cells, particularly melanoma. This cochaperone participates in several signaling pathways. FKBP51 forms a complex with Akt and PHLPP, which is reported to dephosphorylate Akt. Given the recent discovery of a spliced FKBP51 isoform, in this paper, we interrogate the canonical and spliced isoforms in regulation of Akt activation. We show that the TPR domain of FKBP51 mediates Akt ubiquitination at K63, which is an essential step for Akt activation. The spliced FKBP51, lacking such domain, cannot link K63-Ub residues to Akt. Unexpectedly, PHLPP silencing does not foster phosphorylation of Akt, and its overexpression even induces phosphorylation of Akt. PHLPP stabilizes levels of E3-ubiquitin ligase TRAF6 and supports K63-ubiquitination of Akt. The interactome profile of FKBP51 from melanoma cells highlights a relevant role for PHLPP in improving oncogenic hallmarks, particularly, cell proliferation.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Melanoma , Fosfoproteínas Fosfatasas , Proteínas Proto-Oncogénicas c-akt , Proteínas de Unión a Tacrolimus , Humanos , Melanoma/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo
18.
Nutrients ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678346

RESUMEN

BACKGROUND: The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS: Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS: Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS: A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.


Asunto(s)
Fructosa , Proteómica , Ratas , Animales , Fructosa/efectos adversos , Fructosa/metabolismo , Dieta , Hipotálamo/metabolismo , Inflamación/metabolismo
19.
Mol Neurobiol ; 60(2): 1004-1020, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394711

RESUMEN

The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.


Asunto(s)
Acetilcolinesterasa , Factor Neurotrófico Derivado del Encéfalo , Animales , Ratas , Acetilcolinesterasa/metabolismo , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lóbulo Frontal/metabolismo , Fructosa/efectos adversos
20.
Sci Rep ; 12(1): 19982, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411331

RESUMEN

Chemical communication in elephants has been well studied at the chemical and behavioural levels. Pheromones have been identified in the Asian elephant (Elephas maximus), including (Z)-7-dodecenyl acetate and frontalin, and their specific effects on the sexual behaviour of elephants have been accurately documented. In contrast, our knowledge on the proteins mediating detection of pheromones in elephants remains poor and superficial, with only three annotated and reliable entries in sequence databases, two of them being odorant-binding proteins (OBPs), and the third a member of von Ebner's gland (VEG) proteins. Proteomic analysis of trunk wash extract from African elephant (Loxodonta africana) identified one of the OBPs (LafrOBP1) as the main component. We therefore expressed LafrOBP1 and its Asian elephant orthologue in yeast Pichia pastoris and found that both recombinant proteins, as well as the natural LafrOBP1 are tuned to (Z)-7-dodecenyl acetate, but have no affinity for frontalin. Both the natural and recombinant LafrOBP1 carry post-translational modifications such as O-glycosylation, phosphorylation and acetylation, but as these modifications affect only a very small amount of the protein, we cannot establish their potential effects on the ligand-binding properties of OBP1.


Asunto(s)
Elefantes , Atractivos Sexuales , Animales , Atractivos Sexuales/metabolismo , Elefantes/metabolismo , Proteómica , Feromonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA