Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139706

RESUMEN

After a mild traumatic brain injury (mTBI), dizziness and balance problems are frequently reported, affecting individuals' daily lives and functioning. Vestibular rehabilitation is a standard treatment approach for addressing these issues, but its efficacy in this population remains inconclusive. A potential reason for suboptimal outcomes is the lack of objective monitoring of exercise performance, which is crucial for therapeutic success. This study utilized wearable inertial measurement units (IMUs) to quantify exercise performance in individuals with mTBI during home-based vestibular rehabilitation exercises. Seventy-three people with mTBI and fifty healthy controls were enrolled. Vestibular exercises were performed, and IMUs measured forehead and sternum velocities and range of motions. The mTBI group demonstrated a slower forehead peak angular velocity in all exercises, which may be a compensatory strategy to manage balance issues or symptom exacerbation. Additionally, the mTBI group exhibited a larger forehead range of motion during specific exercises, potentially linked to proprioceptive deficits. These findings emphasize the usefulness of utilizing IMUs to monitor the quality of home-based vestibular exercises for individuals with mTBI and the potential for IMUs improving rehabilitation outcomes.


Asunto(s)
Conmoción Encefálica , Dispositivos Electrónicos Vestibles , Humanos , Conmoción Encefálica/diagnóstico , Ejercicio Físico , Terapia por Ejercicio , Resultado del Tratamiento
2.
BMC Neurol ; 23(1): 368, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833645

RESUMEN

BACKGROUND: Balance impairments, that lead to falls, are one of the main symptoms of Parkinson's disease (PD). Telerehabilitation is becoming more common for people with PD; however, balance is particularly challenging to assess and treat virtually. The feasibility and efficacy of virtual assessment and virtual treatment of balance in people with PD are unknown. The present study protocol has three aims: I) to determine if a virtual balance and gait assessment (instrumented L-shape mobility test) with wearable sensors can predict a gold-standard, in-person clinical assessment of balance, the Mini Balance Evaluation Systems Test (Mini-BESTest); II) to explore the effects of 12 sessions of balance telerehabilitation and unsupervised home exercises on balance, gait, executive function, and clinical scales; and III) to explore if improvements after balance telerehabilitation transfer to daily-life mobility, as measured by instrumented socks with inertial sensors worn for 7 days. METHODS: The TelePD Trial is a prospective, single-center, parallel-group, single-blind, pilot, randomized, controlled trial. This trial will enroll 80 eligible people with PD. Participants will be randomized at a 1:1 ratio into receiving home-based balance exercises in either: 1) balance telerehabilitation (experimental group, n = 40) or 2) unsupervised exercises (control group, n = 40). Both groups will perform 12 sessions of exercise at home that are 60 min long. The primary outcome will be Mini-BESTest. The secondary outcomes will be upper and lower body gait metrics from a prescribed task (instrumented L-shape mobility test); daily-life mobility measures over 7 days with wearable sensors in socks, instrumented executive function tests, and clinical scales. Baseline testing and 7 days of daily-life mobility measurement will occur before and after the intervention period. CONCLUSION: The TelePD Trial will be the first to explore the usefulness of using wearable sensor-based measures of balance and gait remotely to assess balance, the feasibility and efficacy of balance telerehabilitation in people with PD, and the translation of balance improvements after telerehabilitation to daily-life mobility. These results will help to develop a more effective home-based balance telerehabilitation and virtual assessment that can be used remotely in people with balance impairments. TRIAL REGISTRATION: This trial was prospectively registered on ClinicalTrials.gov (NCT05680597).


Asunto(s)
Enfermedad de Parkinson , Telerrehabilitación , Dispositivos Electrónicos Vestibles , Humanos , Terapia por Ejercicio/métodos , Enfermedad de Parkinson/complicaciones , Equilibrio Postural , Estudios Prospectivos , Método Simple Ciego , Telerrehabilitación/métodos , Proyectos Piloto
3.
Gait Posture ; 100: 107-113, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36516644

RESUMEN

PURPOSE: Measuring persistent imbalance after mTBI is challenging and may include subjective symptom-reporting as well as clinical scales. Clinical assessments for quantifying balance following mTBI have focused on sensory orientation. It is theorized that balance control goes beyond sensory orientation and also includes subdomains of anticipatory postural adjustments, reactive postural control, and dynamic gait. The Mini Balance Evaluation Systems Test (Mini-BESTest) is a validated balance test that measures balance according to these subdomains for a more comprehensive assessment. The purpose of this study was to compare Mini-BESTest total and subdomain scores after subacute mTBI with healthy controls. METHODS: Symptomatic mTBI (n = 90, 20 % male, age=36.0 ± 12.0, 46.3.4 ± 22.1 days since injury) and healthy control (n = 45, 20 % male, age=35.4 ± 12.5) participants completed the Mini-BESTest for balance. Mini-BESTest between-group differences were evaluated using Wilcoxon rank-sum tests. RESULTS: The mTBI group (Median[minimum,maximum]) had a significantly worse Mini-BESTest total score than the healthy controls (24[18,28] vs 27[23-28], p < 0.001). The mTBI group performed significantly worse in 3 of the 4 subdomains compared to the healthy controls: reactive postural control: 5[2-6] vs 6[3-6], p = 0.003; sensory orientation: 6[5,6] vs 6[6], p = 0.005; dynamic gait: 8[5-10] vs 9[8-10], p < 0.001. There was no significance difference between groups in the anticipatory postural adjustments domain (5[3-6] vs 5[3-6], p = 0.12). CONCLUSIONS: The Mini-BESTest identified deficits in people with subacute mTBI in the total score and 3 out of 4 subdomains, suggesting it may be helpful to use in the clinic to identify balance subdomain deficits in the subacute mTBI population. In combination with self-reported assessments, the mini-BESTest may identify balance domain deficits in the subacute mTBI population and help guide treatment for this population.


Asunto(s)
Conmoción Encefálica , Humanos , Masculino , Adulto Joven , Adulto , Persona de Mediana Edad , Femenino , Marcha , Equilibrio Postural , Autoinforme , Evaluación de la Discapacidad , Reproducibilidad de los Resultados
4.
J Neurol Phys Ther ; 46(4): E1-E10, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35666882

RESUMEN

BACKGROUND AND PURPOSE: Multimodal physical therapy for mild traumatic brain injury (mTBI) has been shown to improve recovery. Due to the coronavirus disease-2019 (COVID-19) pandemic, a clinical trial assessing the timing of multimodal intervention was adapted for telerehabilitation. This pilot study explored feasibility and adoption of an in-person rehabilitation program for subacute mTBI delivered through telerehabilitation. METHODS: Fifty-six in-person participants-9 males; mean (SD) age 34.3 (12.2); 67 (31) days post-injury-and 17 telerehabilitation participants-8 males; age 38.3 (12.7); 61 (37) days post-injury-with subacute mTBI (between 2 and 12 weeks from injury) were enrolled. Intervention included 8, 60-minute visits over 6 weeks and included subcategories that targeted cervical spine, cardiovascular, static balance, and dynamic balance impairments. Telerehabilitation was modified to be safely performed at home with minimal equipment. Outcome measures included feasibility (the number that withdrew from the study, session attendance, home exercise program adherence, adverse events, telerehabilitation satisfaction, and progression of exercises performed), and changes in mTBI symptoms pre- and post-rehabilitation were estimated with Hedges' g effect sizes. RESULTS: In-person and telerehabilitation had a similar study withdrawal rate (13% vs 12%), high session attendance (92% vs 97%), and no adverse events. The telerehabilitation group found the program easy to use (4.2/5), were satisfied with care (4.7/5), and thought it helped recovery (4.7/5). The telerehabilitation intervention was adapted by removing manual therapy and cardiovascular portions and decreasing dynamic balance exercises compared with the in-person group. The in-person group had a large effect size (-0.94) in decreases in symptoms following rehabilitation, while the telerehabilitation group had a moderate effect size (-0.73). DISCUSSION AND CONCLUSIONS: Telerehabilitation may be feasible for subacute mTBI. Limited ability to address cervical spine, cardiovascular, and dynamic balance domains along with underdosage of exercise progression may explain group differences in symptom resolution.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A392 ).


Asunto(s)
Conmoción Encefálica , COVID-19 , Telerrehabilitación , Adulto , Terapia por Ejercicio , Humanos , Masculino , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...