Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(14): 6776-6783, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37343942

RESUMEN

Spin waves represent the collective excitations of the magnetization field within a magnetic material, providing dispersion curves that can be manipulated by material design and external stimuli. Bulk and surface spin waves can be excited in a thin film with positive or negative group velocities and, by incorporating a symmetry-breaking mechanism, magnetochiral features arise. Here we study the band diagram of a chiral magnonic crystal consisting of a ferromagnetic film incorporating a periodic Dzyaloshinskii-Moriya coupling via interfacial contact with an array of heavy-metal nanowires. We provide experimental evidence for a strong asymmetry of the spin wave amplitude induced by the modulated interfacial Dzyaloshinskii-Moriya interaction, which generates a nonreciprocal propagation. Moreover, we observe the formation of flat spin-wave bands at low frequencies in the band diagram. Calculations reveal that depending on the perpendicular anisotropy, the spin-wave localization associated with the flat modes occurs in the zones with or without Dzyaloshinskii-Moriya interaction.

2.
Adv Mater ; 32(9): e1906439, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31944413

RESUMEN

Integrated optically inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction-limited spin-wave beams, and generating robust multi-beam interference patterns, which spatially extend for several times the spin-wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin-wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves.

3.
Materials (Basel) ; 13(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947686

RESUMEN

Synthetic antiferromagnets (SAF) are widely used for a plethora of applications among which data storage, computing, and in the emerging field of magnonics. In this framework, controlling the magnetic properties of SAFs via localized thermal treatments represents a promising route for building novel magnonic materials. In this paper, we study via vibration sample magnetometry the temperature dependence of the magnetic properties of sputtered exchange bias SAFs grown via magnetron sputtering varying the ferromagnetic layers and spacer thickness. Interestingly, we observe a strong, reversible modulation of the exchange field, saturation field, and coupling strength upon heating up to 250 °C. These results suggest that exchange bias SAFs represent promising systems for developing novel artificial magnetic nanomaterials via localized thermal treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...