Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 293: 102439, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34058435

RESUMEN

Electrodialysis is mostly used for drinking water production but it has gained applicability in different new fields in recent decades. Membrane characteristics and ion transport properties strongly influence the efficiency of electrodialysis and must be evaluated to avoid an intense energy consumption and ensure long membrane times of usage. To this aim, conducting studies on ion transport across membranes is essential. Several dynamic characterization methods can be employed, among which, chronopotentiometry has shown special relevance because it allows a direct access to the contribution of the potential in different states of the membrane/solution system. The present paper provides a critical review on the use of chronopotentiometry to determine the main membrane transport properties and to evaluate mass transfer phenomena. Properties, such as limiting current density, electrical resistances, plateau length, transport number of counter-ions in the membrane, transition times, and apparent fraction of membrane conductive area have been intensively discussed in the literature and are presented in this review. Some of the phenomena evaluated using this technique are concentration polarization, gravitational convection, electroconvection, water dissociation, and fouling/scaling, all of them also shown herein. Mathematical and experimental studies were considered. New trends in chronopotentiometric studies should include ion-exchange membranes that have been recently developed (presenting anti-fouling, anti-microbial, and monovalent-selective properties) and a deeper discussion on the behaviour of complex solutions that have been often treated by electrodialysis, such as municipal wastewaters. New mathematical models, especially 3D ones, are also expected to be developed in the coming years.


Asunto(s)
Membranas Artificiales , Agua , Intercambio Iónico , Iones
2.
Membranes (Basel) ; 10(4)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290497

RESUMEN

Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide­free wastewater from the brass electroplating industry with EDTA as a complexing agent by electrodialysis, aimed at recovering water and concentrated solutions for reuse. The electrodialysis tests were performed in underlimiting and overlimiting conditions. The results suggested that intense water dissociation occurred at the cathodic side of the commercial anion­exchange membrane (HDX) during the overlimiting test. Consequently, the pH reduction at this membrane may have led to the reaction of protons with complexes of EDTA-metals and insoluble species. This allowed the migration of free Cu2+ and Zn2+ to the cation-exchange membrane as a result of the intense electric field and electroconvection. These overlimiting phenomena accounted for the improvement of the percent extraction and percent concentration, since in the electrodialysis stack employed herein, the concentrate compartments of cationic and anionic species were connected to the same reservoir. Chronopotentiometric studies showed that electroconvective vortices minimized fouling/scaling at both membranes. The electrodialysis in the overlimiting condition seemed to be more advantageous due to water dissociation and electroconvection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...