Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB Bioadv ; 2(8): 453-463, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32821877

RESUMEN

PGC1α-Related Coactivator (PRC) is a transcriptional coactivator promoting cytokine expression in vitro in response to mitochondrial injury and oxidative stress, however, its physiological role has remained elusive. Herein we investigate aspects of the immune response function of PRC, first in an in vivo thioacetamide (TAA)-induced mouse model of drug-induced liver injury (DILI), and subsequently in vitro in human monocytes, HepG2, and dendritic (DC) cells. TAA treatment resulted in the dose-dependent induction of PRC mRNA and protein, both of which were shown to correlate with liver injury markers. Conversely, an adenovirus-mediated knockdown of PRC attenuated this response, thereby reducing hepatic cytokine mRNA expression and monocyte infiltration. Subsequent in vitro studies with conditioned media from HepG2 cells overexpressing PRC, activated human monocytes and monocyte-derived DC, demonstrated up to 20% elevated expression of CD86, CD40, and HLA-DR. Similarly, siRNA-mediated knockdown of PRC abolished this response in oligomycin stressed HepG2 cells. A putative mechanism was suggested by the co-immunoprecipitation of Signal Transducer and Activator of Transcription 1 (STAT1) with PRC, and induction of a STAT-dependent reporter. Furthermore, PRC co-activated an NF-κB-dependent reporter, indicating interaction with known major inflammatory factors. In summary, our study indicates PRC as a novel factor modulating inflammation in DILI.

2.
J Biol Chem ; 291(49): 25529-25541, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27789709

RESUMEN

PGC-1-related coactivator (PRC) has a dual function in growth-regulated mitochondrial biogenesis and as a sensor of metabolic stress. PRC induction by mitochondrial inhibitors, intracellular ROS, or topoisomerase I inhibition orchestrates an inflammatory program associated with the adaptation to cellular stress. Activation of this program is accompanied by the coordinate expression of c-MYC, which is linked kinetically to that of PRC in response to multiple stress inducers. Here, we show that the c-MYC inhibitor 10058-F4 blocks the induction of c-MYC, PRC, and representative PRC-dependent stress genes by the respiratory chain uncoupler, carbonyl cyanide m-chlorophenyl hydrazine (CCCP). This result, confirmed by the suppression of PRC induction by c-MYC siRNA silencing, demonstrates a requirement for c-MYC in orchestrating the stress program. PRC steady-state expression was markedly increased upon mutation of two GSK-3 serine phosphorylation sites within the carboxyl-terminal domain. The negative control of PRC expression by GSK-3 was consistent with the phosphor-inactivation of GSK-3ß by CCCP and by the induction of PRC by the GSK-3 inhibitor AZD2858. Unlike PRC, which was induced post-translationally through increased protein half-life, c-MYC was induced predominantly at the mRNA level. Moreover, suppression of Akt activation by the Akt inhibitor MK-2206 blocked the CCCP induction of PRC, c-MYC, and representative PRC stress genes, demonstrating a requirement for Akt signaling. MK-2206 also inhibited the phosphor-inactivation of GSK-3ß by CCCP, a result consistent with the ability of Akt to phosphorylate, and thereby suppress GSK-3 activity. Thus, PRC and c-MYC can act in concert through Akt-GSK-3 signaling to reprogram gene expression in response to mitochondrial stress.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Mitocondrias/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Pirazinas/farmacología , Sulfonamidas/farmacología , Tiazoles/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
3.
J Biol Chem ; 288(12): 8004-8015, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23364789

RESUMEN

PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated ß-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction.


Asunto(s)
Apoptosis , Senescencia Celular , Estrés Oxidativo , Factores de Transcripción/fisiología , Acetilcisteína/farmacología , Antioxidantes/farmacología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Línea Celular Tumoral , Supervivencia Celular , Proteínas Ricas en Prolina del Estrato Córneo/genética , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Antagonistas de los Receptores Histamínicos H1/farmacología , Humanos , Inflamación/genética , Inflamación/metabolismo , Irinotecán , Cinética , Meclizina/farmacología , Oxidantes/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ionóforos de Protónes/farmacología , ARN Interferente Pequeño/genética , Inhibidores de Topoisomerasa I/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Vitamina K 3/farmacología
4.
Trends Endocrinol Metab ; 23(9): 459-66, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22817841

RESUMEN

Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.


Asunto(s)
Recambio Mitocondrial/fisiología , Transcripción Genética/genética , Animales , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos , Recambio Mitocondrial/genética , Receptores Activados del Proliferador del Peroxisoma/genética
5.
Biochim Biophys Acta ; 1819(9-10): 1088-97, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22080153

RESUMEN

Nucleus-encoded regulatory factors are major contributors to mitochondrial biogenesis and function. Several act within the organelle to regulate mitochondrial transcription and translation while others direct the expression of nuclear genes encoding the respiratory chain and other oxidative functions. Loss-of-function studies for many of these factors reveal a wide spectrum of phenotypes. These range from embryonic lethality and severe respiratory chain deficiency to relatively mild mitochondrial defects seen only under conditions of physiological stress. The PGC-1 family of regulated coactivators (PGC-1α, PGC-1ß and PRC) plays an important integrative role through their interactions with transcription factors (NRF-1, NRF-2, ERRα, CREB, YY1 and others) that control respiratory gene expression. In addition, recent evidence suggests that PGC-1 coactivators may balance the cellular response to oxidant stress by promoting a pro-oxidant environment or by orchestrating an inflammatory response to severe metabolic stress. These pathways may serve as essential links between the energy generating functions of mitochondria and the cellular REDOX environment associated with longevity, senescence and disease. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.


Asunto(s)
Transporte de Electrón/genética , Mitocondrias , Proteínas Nucleares , Factores de Transcripción , Animales , Regulación de la Expresión Génica , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
6.
J Biol Chem ; 286(46): 39715-25, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21937425

RESUMEN

PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor that activates many nuclear genes specifying mitochondrial respiratory function. Stable PRC silencing in U2OS cells results in a complex phenotype typical of mitochondrial dysfunction including abundant abnormal mitochondria, reduced respiratory subunit expression, diminished respiratory enzymes and ATP levels, and elevated lactate production. The PRC response to metabolic stress was investigated by subjecting cells to metabolic insults including treatment with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), expression of a dominant negative allele of nuclear respiratory factor 1 (NRF-1), and glucose deprivation. These treatments led to constitutively elevated PRC protein levels, a departure from its normal transient expression upon the initiation of cell growth. A microarray screen identified 45 genes that require PRC for their induction by CCCP. A subset of these genes specific to inflammation and cell stress was also induced by dominant negative NRF-1 and by glucose deprivation, suggesting that diverse metabolic insults converge on the same PRC-dependent inflammatory program. The PRC-dependent inflammatory response was inhibited by N-acetylcysteine, suggesting that PRC may contribute to the inflammatory microenvironment linked to oxidant signaling. The induction of this PRC-dependent program may be an early event in adaptations linked to cancer and degenerative diseases.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Acetilcisteína/farmacología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Depuradores de Radicales Libres/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Inflamación/genética , Inflamación/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ionóforos de Protónes/farmacología , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética
7.
Biochim Biophys Acta ; 1813(7): 1269-78, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20933024

RESUMEN

The PGC-1 family of regulated coactivators, consisting of PGC-1α, PGC-1ß and PRC, plays a central role in a regulatory network governing the transcriptional control of mitochondrial biogenesis and respiratory function. These coactivators target multiple transcription factors including NRF-1, NRF-2 and the orphan nuclear hormone receptor, ERRα, among others. In addition, they themselves are the targets of coactivator and co-repressor complexes that regulate gene expression through chromatin remodeling. The expression of PGC-1 family members is modulated by extracellular signals controlling metabolism, differentiation or cell growth and in some cases their activities are known to be regulated by post-translational modification by the energy sensors, AMPK and SIRT1. Recent gene knockout and silencing studies of many members of the PGC-1 network have revealed phenotypes of wide ranging severity suggestive of complex compensatory interactions or broadly integrative functions that are not exclusive to mitochondrial biogenesis. The results point to a central role for the PGC-1 family in integrating mitochondrial biogenesis and energy production with many diverse cellular functions. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.


Asunto(s)
Mitocondrias/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Humanos , Ratones , Factor 1 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores de Estrógenos/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
8.
J Biol Chem ; 284(4): 2307-19, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19036724

RESUMEN

PRC, a member of the PGC-1 coactivator family, is responsive to serum growth factors and up-regulated in proliferating cells. Here, we investigated its in vivo role by stably silencing PRC expression with two different short hairpin RNAs (shRNA1 and shRNA4) that were lentivirally introduced into U2OS cells. shRNA1 transductants exhibited nearly complete knockdown of PRC protein, whereas shRNA4 transductants expressed PRC protein at approximately 15% of the control level. Complete PRC silencing by shRNA1 resulted in a severe inhibition of respiratory growth; reduced expression of respiratory protein subunits from complexes I, II, III, and IV; markedly lower complex I and IV respiratory enzyme levels; and diminished mitochondrial ATP production. Surprisingly, shRNA1 transductants exhibited a striking proliferation of abnormal mitochondria that were devoid of organized cristae and displayed severe membrane abnormalities. Although shRNA4 transductants had normal respiratory subunit expression and a moderately diminished respiratory growth rate, both transductants showed markedly reduced growth on glucose accompanied by inhibition of G1/S cell cycle progression. Microarray analysis revealed striking overlaps in the genes affected by PRC silencing in the two transductants, and the functional identities of these overlapping genes were consistent with the observed mitochondrial and cell growth phenotypes. The consistency between phenotype and PRC expression levels in the two independent transductant lines argues that the defects result from PRC silencing and not from off target effects. These results support a role for PRC in the integration of pathways directing mitochondrial respiratory function and cell growth.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Conformación de Ácido Nucleico , Interferencia de ARN , Factores de Transcripción/metabolismo , Línea Celular , Proliferación Celular , Humanos , Lentivirus/genética , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción/genética
9.
Ann N Y Acad Sci ; 1147: 321-34, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19076454

RESUMEN

Expression of the respiratory apparatus depends on both nuclear and mitochondrial genes. Although these genes are sequestered in distinct cellular organelles, their transcription relies on nucleus-encoded factors. Certain of these factors are directed to the mitochondria, where they sponsor the bi-directional transcription of mitochondrial DNA. Others act on nuclear genes that encode the majority of the respiratory subunits and many other gene products required for the assembly and function of the respiratory chain. The nuclear respiratory factors, NRF-1 and NRF-2, contribute to the expression of respiratory subunits and mitochondrial transcription factors and thus have been implicated in nucleo-mitochondrial interactions. In addition, coactivators of the PGC-1 family serve as mediators between the environment and the transcriptional machinery governing mitochondrial biogenesis. One family member, peroxisome proliferator-activated receptor gamma coactivator PGC-1-related coactivator (PRC), is an immediate early gene product that is rapidly induced by mitogenic signals in the absence of de novo protein synthesis. Like other PGC-1 family members, PRC binds NRF-1 and activates NRF-1 target genes. In addition, PRC complexes with NRF-2 and HCF-1 (host cell factor-1) in the activation of NRF-2-dependent promoters. HCF-1 functions in cell-cycle progression and has been identified as an NRF-2 coactivator. The association of these factors with PRC is suggestive of a role for the complex in cell growth. Finally, shRNA-mediated knock down of PRC expression results in a complex phenotype that includes the inhibition of respiratory growth on galactose and the loss of respiratory complexes. Thus, PRC may help integrate the expression of the respiratory apparatus with the cell proliferative program.


Asunto(s)
Núcleo Celular/metabolismo , Transporte de Electrón , Factores de Transcripción/fisiología , Humanos , Mitocondrias/metabolismo
10.
Physiol Rev ; 88(2): 611-38, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18391175

RESUMEN

Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARalpha, ERRalpha, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Transcripción Genética , Animales , Núcleo Celular/metabolismo , ADN Mitocondrial/química , Ratones , Ratones Noqueados , Estructura Molecular
11.
J Biol Chem ; 283(18): 12102-11, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18343819

RESUMEN

The PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC) plays an important role in directing respiratory gene expression in response to environmental signals. Here, we show that PRC and PGC-1alpha differ in their interactions with nuclear hormone receptors but are highly similar in their direct binding to several nuclear transcription factors implicated in the expression of the respiratory chain. Surprisingly, neither coactivator binds NRF-2(GABP), a multisubunit transcriptional activator associated with the expression of many respiratory genes. However, the NRF-2 subunits and PRC are co-immunoprecipitated from cell extracts indicating that the two proteins exist in a complex in vivo. Several lines of evidence indicate that HCF-1 (host cell factor 1), a major chromatin component, mediates the association between PRC and NRF-2. Both PRC and NRF-2beta bind HCF-1 in vitro, and the molecular determinants required for the interactions of each with HCF-1 are also required for PRC trans-activation through promoter-bound NRF-2. These determinants include a consensus HCF-1 binding site on PRC and the NRF-2 activation domain. In addition, PRC and NRF-2beta can complex with HCF-1 in vivo, and all three associate with NRF-2-dependent nuclear genes that direct the expression of the mitochondrial transcription factors, TFB1M and TFB2M. Finally, short hairpin RNA-mediated knock down of PRC protein levels leads to reduced expression of TFB2M mRNA and mitochondrial transcripts for cytochrome oxidase II (COXII) and cytochrome b. These changes in gene expression coincide with a marked reduction in cytochrome oxidase activity. The results are consistent with a pathway whereby PRC regulates NRF-2-dependent genes through a multiprotein complex involving HCF-1.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Regulación de la Expresión Génica , Factor C1 de la Célula Huésped/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Activación Transcripcional/genética
12.
Mol Cell Biol ; 26(20): 7409-19, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16908542

RESUMEN

PGC-1-related coactivator (PRC) was initially characterized as a transcriptional coactivator that shares structural and functional features with PGC-1alpha. Both coactivators interact with nuclear respiratory factor 1 (NRF-1) and activate NRF-1 target genes required for respiratory chain expression. Here, we establish that PRC belongs to the class of immediate early genes that are rapidly induced in the transition from quiescence to proliferative growth. As observed for other members of this class, the rapid serum induction of PRC mRNA does not require de novo protein synthesis and inhibition of protein synthesis stabilizes PRC mRNA, leading to its superinduction. Previous work indicated that PRC activation of cytochrome c expression occurs through cis-acting elements that bind both NRF-1 and CREB. Here, we demonstrate that, like NRF-1, CREB binds PRC in vitro and exists in a complex with PRC in cell extracts. Both CREB and NRF-1 bind the same sites on PRC, and the interaction with CREB requires the CREB b-Zip DNA binding domain. Moreover, a CREB/NRF-1 interaction domain on PRC is required for its trans activation of the cytochrome c promoter and a PRC subfragment containing this domain inhibits respiratory growth on galactose when expressed in trans from a lentivirus vector. Finally, PRC associates with the cytochrome c promoter in vivo and its occupancy of the promoter is markedly elevated in response to serum induction of quiescent fibroblasts. The results establish that PRC is an immediate early gene product that can target key transcription factors as an early event in the program of cellular proliferation.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Citocromos c/genética , Regulación de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteína de Unión a CREB/genética , Línea Celular , Proliferación Celular , Proteínas de Choque Térmico/genética , Humanos , Ratones , Datos de Secuencia Molecular , Factor 1 Relacionado con NF-E2/genética , Unión Proteica , Suero , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
13.
J Cell Biochem ; 97(4): 673-83, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16329141

RESUMEN

The mitochondrial respiratory apparatus is the product of both nuclear and mitochondrial genes. The protein coding capacity of mtDNA is restricted to the expression of 13 respiratory subunits and thus nuclear genes play a predominant role in the biosynthesis of the respiratory chain and in the expression of the mitochondrial genome. Transcriptional regulators that act on both nuclear and mitochondrial genes have been implicated in the bi-genomic expression of the respiratory chain. Mitochondrial transcription is directed by a small number of nucleus-encoded factors (Tfam, TFB1M, TFB2M, mTERF). The expression of these factors is coordinated with that of nuclear respiratory proteins through the action of transcriptional activators and coactivators. In particular, environmental signals induce the expression of PGC-1 family coactivators (PGC-1alpha, PGC-1beta, and PRC), which in turn target specific transcription factors (NRF-1, NRF-2, and ERR alpha) in the expression of respiratory genes. This system provides a mechanism for linking respiratory chain expression to environmental conditions and for integrating it with other functions related to cellular energetics.


Asunto(s)
Núcleo Celular/metabolismo , Transporte de Electrón/genética , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Mamíferos , Modelos Biológicos , Factor 2 Relacionado con NF-E2/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Receptor Relacionado con Estrógeno ERRalfa
14.
Cell Metab ; 1(6): 409-14, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16054090

RESUMEN

Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic stabilization of HIF-1 alpha protein. Fibroblasts from a patient with Leigh's syndrome, which display residual levels of electron transport activity and are incompetent in oxidative phosphorylation, stabilize HIF-1 alpha during hypoxia. The expression of glutathione peroxidase or catalase, but not superoxide dismutase 1 or 2, prevents the hypoxic stabilization of HIF-1 alpha. These findings provide genetic evidence that oxygen sensing is dependent on mitochondrial-generated reactive oxygen species (ROS) but independent of oxidative phosphorylation.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
15.
Mol Cell Biol ; 25(4): 1354-66, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15684387

RESUMEN

In vertebrates, mitochondrial DNA (mtDNA) transcription is initiated bidirectionally from closely spaced promoters, HSP and LSP, within the D-loop regulatory region. Early studies demonstrated that mtDNA transcription requires mitochondrial RNA polymerase and Tfam, a DNA binding stimulatory factor that is required for mtDNA maintenance. Recently, mitochondrial transcription specificity factors (TFB1M and TFB2M), which markedly enhance mtDNA transcription in the presence of Tfam and mitochondrial RNA polymerase, have been identified in mammalian cells. Here, we establish that the expression of human TFB1M and TFB2M promoters is governed by nuclear respiratory factors (NRF-1 and NRF-2), key transcription factors implicated in mitochondrial biogenesis. In addition, we show that NRF recognition sites within both TFB promoters are required for maximal trans activation by the PGC-1 family coactivators, PGC-1alpha and PRC. The physiological induction of these coactivators has been associated with the integration of NRFs and other transcription factors in a program of mitochondrial biogenesis. Finally, we demonstrate that the TFB genes are up-regulated along with Tfam and either PGC-1alpha or PRC in cellular systems where mitochondrial biogenesis is induced. Moreover, ectopic expression of PGC-1alpha is sufficient to induce the coordinate expression of all three nucleus-encoded mitochondrial transcription factors along with nuclear and mitochondrial respiratory subunits. These results support the conclusion that the coordinate regulation of nucleus-encoded mitochondrial transcription factors by NRFs and PGC-1 family coactivators is essential to the control of mitochondrial biogenesis.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Animales , Células 3T3 BALB , Secuencia de Bases , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Metiltransferasas , Ratones , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Factor 1 Relacionado con NF-E2 , Factor 2 Relacionado con NF-E2 , Proteínas Nucleares/genética , Factor Nuclear 1 de Respiración , Factores Nucleares de Respiración , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas , Transactivadores/genética , Factores de Transcripción/genética , Regulación hacia Arriba
16.
Mol Cell ; 16(3): 399-411, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15525513

RESUMEN

Using genome-wide analysis of transcription factor occupancy, we investigated the mechanisms underlying three mammalian growth arrest pathways that require the pRB tumor suppressor family. We found that p130 and E2F4 cooperatively repress a common set of genes under each growth arrest condition and showed that growth arrest is achieved through repression of a core set of genes involved not only in cell cycle control but also mitochondrial biogenesis and metabolism. Motif-finding algorithms predicted the existence of nuclear respiratory factor-1 (NRF1) binding sites in E2F target promoters, and genome-wide factor binding analysis confirmed our predictions. We showed that NRF1, a factor known to regulate expression of genes involved in mitochondrial function, is a coregulator of a large number of E2F target genes. Our studies provide insights into E2F regulatory circuitry, suggest how factor occupancy can predict the expression signature of a given target gene, and reveal pathways deregulated in human tumors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genes Reguladores/fisiología , Neoplasias/patología , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Apoptosis , Sitios de Unión , Factor de Transcripción E2F4 , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Factor Nuclear 1 de Respiración , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína p107 Similar a la del Retinoblastoma , Proteína p130 Similar a la del Retinoblastoma , Células Tumorales Cultivadas
18.
Biochim Biophys Acta ; 1576(1-2): 1-14, 2002 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-12031478

RESUMEN

The biogenesis of mitochondria requires the expression of a large number of genes, most of which reside in the nuclear genome. The protein-coding capacity of mtDNA is limited to 13 respiratory subunits necessitating that nuclear regulatory factors play an important role in governing nucleo-mitochondrial interactions. Two classes of nuclear transcriptional regulators implicated in mitochondrial biogenesis have emerged in recent years. The first includes DNA-binding transcription factors, typified by nuclear respiratory factor (NRF)-1, NRF-2 and others, that act on known nuclear genes that specify mitochondrial functions. A second, more recently defined class, includes nuclear coactivators typified by PGC-1 and related family members (PRC and PGC-1 beta). These molecules do not bind DNA but rather work through their interactions with DNA-bound transcription factors to regulate gene expression. An important feature of these coactivators is that their expression is responsive to physiological signals mediating thermogenesis, cell proliferation and gluconeogenesis. Thus, they have the ability to integrate the action of multiple transcription factors in orchestrating programs of gene expression essential to cellular energetics. The interplay of these nuclear factors appears to be a major determinant in regulating the biogenesis of mitochondria.


Asunto(s)
ADN Mitocondrial/fisiología , Proteínas de Unión al ADN/fisiología , Mitocondrias/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Animales , Núcleo Celular/fisiología , Regulación de la Expresión Génica , Humanos , Factor 1 Relacionado con NF-E2 , Factor Nuclear 1 de Respiración , Factores Nucleares de Respiración
19.
Gene ; 286(1): 81-9, 2002 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-11943463

RESUMEN

The biogenesis and function of mitochondria rely upon the regulated expression of nuclear genes. Recent evidence points to both transcriptional activators and coactivators as important mediators of mitochondrial maintenance and proliferation. Several sequence-specific activators including NRF-1, NRF-2, Sp1, YY1, CREB and MEF-2/E-box factors, among others, have been implicated in respiratory chain expression. Notably, recognition sites for NRF-1, NRF-2 and Sp1 are common to most nuclear genes encoding respiratory subunits, mitochondrial transcription and replication factors, as well as certain heme biosynthetic enzymes and components of the protein import machinery. Moreover, genetic evidence supports a role for NRF-1 in the maintenance of mtDNA during embryonic development. Despite these advances, the means by which multiple transcription factors are integrated into a program of mitochondrial biogenesis remains an open question. New insight into this problem came with the discovery of the transcriptional coactivator, PGC-1. This cofactor is cold inducible in brown fat and interacts with multiple transcription factors to orchestrate a program of adaptive thermogenesis. As part of this program, PGC-1 can up-regulate nuclear genes that are required for mitochondrial biogenesis in part through a direct interaction with NRF-1. Ectopic expression of PGC-1 induces the expression of respiratory subunit mRNAs and leads to mitochondrial proliferation in both cultured cells and transgenic mice. More recently, PRC was characterized as a novel coactivator that shares certain structural similarities with PGC-1 including an activation domain, an RS domain and an RNA recognition motif. However, unlike PGC-1, PRC is not induced significantly during thermogenesis but rather is cell-cycle regulated in cultured cells under conditions where PGC-1 is not expressed. PRC has a transcriptional specificity that is very similar to PGC-1, especially in its interaction with NRF-1 and in the activation of NRF-1 target genes. These regulated coactivators may provide a means for integrating sequence-specific activators in the biogenesis and function of mitochondria under diverse physiological conditions.


Asunto(s)
Núcleo Celular/genética , Mitocondrias/fisiología , Transactivadores/genética , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Transducción de Señal , Transactivadores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA