Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(20): 13406-13414, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38722052

RESUMEN

Solvation shells strongly influence the interfacial chemistry of colloidal systems, from the activity of proteins to the colloidal stability and catalysis of nanoparticles. Despite their fundamental and practical importance, solvation shells have remained largely undetected by spectroscopy. Furthermore, their ability to assemble at complex but realistic interfaces with heterogeneous and rough surfaces remains an open question. Here, we apply vibrational sum frequency scattering spectroscopy (VSFSS), an interface-specific technique, to colloidal nanocrystals with porous metal-organic frameworks (MOFs) as a case study. Due to the porous nature of the solvent-particle boundary, MOF particles challenge conventional models of colloidal and interfacial chemistry. Their multiweek colloidal stability in the absence of conventional surface ligands suggests that stability may arise in part from solvation forces. Spectra of colloidally stable Zn(2-methylimidazolate)2 (ZIF-8) in polar solvents indicate the presence of ordered solvation shells, solvent-metal binding, and spontaneous ordering of organic bridging linkers within the MOF. These findings help explain the unexpected colloidal stability of MOF colloids, while providing a roadmap for applying VSFSS to wide-ranging colloidal nanocrystals in general.

2.
J Phys Chem B ; 126(39): 7720-7730, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36166822

RESUMEN

Developing the knowledge on surfactant interfacial phenomena is highly valuable for the advancement of technological, commercial, and industrial products, as these applications often rely on interfacial and colloidal chemistry. Zwitterionic surfactants are a less toxic alternative to standard charged surfactants. With both positively charged quaternary ammonium and negatively charged sulfonate constituents, zwitterionic DDAPS can have diverse interfacial interactions with various coadditives. In this work, we investigate DDAPS adsorption to a planar oil/water interface and its stabilization of oil-in-water nanoemulsions. By studying both interfacial geometries with surface-specific, nonlinear spectroscopy, we gain deeper insights and a molecular perspective into DDAPS's behavior in the presence of various salts and cosurfactants. From an application standpoint, zwitterionic surfactants are often mixed with other chemicals or used in an environment with pre-existing chemicals (e.g., ocean water during oil remediation). Thus, it is important to understand how such coadditives alter DDAPS's behavior and its performance as an emulsifier. Our results show that DDAPS is nearly uninfluenced by coadditives at a planar oil/water interface, but the identical coadditives are crucial for DDAPS to form and stabilize nanoemulsions. Additionally, the surfactant packing properties vary between interfaces as well as coadditives, indicating that certain interactions with the DDAPS headgroup are stronger and play a greater role in tuning DDAPS's interfacial behavior.

3.
J Chem Phys ; 153(16): 164705, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33138429

RESUMEN

Methylglyoxal (MG)-an atmospherically important α-dicarbonyl implicated in aqueous-phase secondary organic aerosol formation-is known to be surface-active. Due to the presence of carbonyl moieties, MG can hydrate to form geminal diols in solution. Recently, it has been shown that MG exists predominantly as a monohydrate at the neat air-water interface. However, inorganic aerosol constituents have the potential to "salt-out" MG to the interface, shift its hydration equilibria, and catalyze self- and cross-oligomerization reactions. Here, we study the influence of the non-reactive salt, sodium chloride (NaCl), on the MG's surface adsorption and hydration state using vibrational sum frequency spectroscopy. The presence of NaCl is found to enhance MG's surface activity but not to the extent that water is fully excluded from the interface. Perturbations in the interfacial water structure are attributed to shifts in MG's hydration equilibrium at higher ionic strengths. Evidence of surface-active MG oligomer species is presented, but such oligomers are not thought to contribute significantly to the interfacial population. This work builds on the published studies on MG in pure water and gives insight into the interface's perturbation by NaCl, which has important implications for understanding MG's atmospheric fate.

4.
J Phys Chem A ; 123(49): 10609-10619, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31651168

RESUMEN

It is well known that atmospheric aerosol play important roles in the environment. However, there is still much to learn about the processes that form aerosols, particularly aqueous secondary organic aerosols. While pyruvic acid (PA) is often better known for its biological significance, it is also an abundant atmospheric secondary organic ketoacid. It has been shown that, in bulk aqueous environments, PA exists in equilibrium between unhydrated α-keto carboxylic acid (PYA) and singly hydrated geminal diol carboxylic acid (PYT), favoring the diol. These studies have also identified oligomer products in the bulk, including zymonic acid (ZYA) and parapyruvic acid (PPA). The surface behavior of these oligomers has not been studied, and their contributions (if any) to the interface are unknown. Here, we address this knowledge gap by examining the molecular species present at the interface of aqueous PA systems using vibrational sum frequency spectroscopy (VSFS), a surface-sensitive technique. VSFS provides information about interfacial molecular populations, orientations, and behaviors. Computational studies using classical molecular dynamics and quantum mechanical density functional theory are employed in combination to afford further insights into these systems. Our studies indicate populations of at least two intensely surface-active oligomeric species at the interface. Computational results demonstrate that, along with PYA and PYT, both PPA and ZYA are surface-active with strong VSF responses that can account for features in the experimental spectra.

5.
J Phys Chem A ; 122(15): 3837-3849, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29608301

RESUMEN

Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Šdeep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.

6.
Inorg Chem ; 52(10): 6187-92, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23659609

RESUMEN

Raman spectroscopy, infrared spectroscopy, and quantum mechanical computations were used to characterize and assign observed spectral features, highlight structural characteristics, and investigate the bonding environments of [M13(µ3-OH)6(µ2-OH)18(H2O)24](NO3)15 (M = Al or Ga) nanoscale clusters in the solid phase and aqueous solution. Solid-phase Raman spectroscopy was used to reveal that the metal-oxygen (M-O) symmetric stretch (breathing mode) for the Al13 cluster is observed at 478 cm(-1), whereas this same mode is seen at 464 cm(-1) in the Ga13 cluster. The hydroxide bridges in each cluster are weakly Raman active but show slightly stronger infrared activity. The breathing modes associated with the clusters in the solid state are not clearly visible in aqueous solution. This change in behavior in the solution phase may indicate a symmetry breaking of the cluster or exchange events between protons on the ligands and the protic solvent. Overall, each cluster has several unique vibrational modes in the low wavenumber region (<1500 cm(-1)) that are distinct from the parent nitrate salt and other polymeric species with similar structure, which allows for unambiguous identification of the cluster in solution and solid phases.

7.
J Phys Chem A ; 111(25): 5353-60, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17552498

RESUMEN

Femtosecond pump-probe studies of the photodissociation and subsequent radical cage pair recombination dynamics of the organometallic dimer [Cp'Mo(CO)3]2 (Cp' = eta5-C5H4CH3) are reported. The dynamics following photodissociation were studied in numerous noncoordinating hydrocarbon solvents. The results indicate that primary geminate recombination occurs on an ultrafast time scale (tau approximately 5 ps) and the efficiency of cage escape is inversely proportional to solvent viscosity. Investigation of the time-dependent anisotropy in this system allowed for an estimate of the rotational correlation time of the radical fragments (tau approximately 5-25 ps). Comparison of the rates of rotational motion with the population kinetics shows that the primary solvent cage dynamics and recombination efficiency are controlled by radical diffusion and not by radical rotation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...