Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848465

RESUMEN

The expectation value of the Hamiltonian using a model wave function is widely used to estimate the eigenvalues of electronic Hamiltonians. We explore here a modified formula for models based on a long-range interaction. It scales differently the singlet and triplet components of the repulsion between electrons not present in the model (its short-range part). The scaling factors depend uniquely on the parameter used in defining the model interaction and are constructed using only exact properties. We show results for the ground states and low-lying excited states of Harmonium with two to six electrons. We obtain important improvements for the estimation of the exact energy, not only over the model energy but also over the expectation value of the Hamiltonian.

2.
J Comput Chem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751144

RESUMEN

In this article, we explore the construction of Hamiltonians with long-range interactions and their corrections using the short-range behavior of the wave function. A key aspect of our investigation is the examination of the one-particle potential, kept constant in our previous work, and the effects of its optimization on the adiabatic connection. Our methodology involves the use of a parameter-dependent potential dependent on a single parameter to facilitate practical computations. We analyze the energy errors and densities in a two-electron system (harmonium) under various conditions, employing different confinement potentials and interaction parameters. The study reveals that while the mean-field potential improves the expectation value of the physical Hamiltonian, it does not necessarily improve the energy of the system within the bounds of chemical accuracy. We also delve into the impact of density variations in adiabatic connections, challenging the common assumption that a mean field improves results. Our findings indicate that as long as energy errors remain within chemical accuracy, the mean field does not significantly outperform a bare potential. This observation is attributed to the effectiveness of corrections based on the short-range behavior of the wave function, a universal characteristic that diminishes the distinction between using a mean field or not.

3.
J Chem Theory Comput ; 20(10): 4129-4145, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749498

RESUMEN

We reexamine ΔCCSD, a state-specific coupled-cluster (CC) with single and double excitations (CCSD) approach that targets excited states through the utilization of non-Aufbau determinants. This methodology is particularly efficient when dealing with doubly excited states, a domain in which the standard equation-of-motion CCSD (EOM-CCSD) formalism falls short. Our goal here to evaluate the effectiveness of ΔCCSD when applied to other types of excited states, comparing its consistency and accuracy with EOM-CCSD. To this end, we report a benchmark on excitation energies computed with the ΔCCSD and EOM-CCSD methods for a set of molecular excited-state energies that encompasses not only doubly excited states but also doublet-doublet transitions and (singlet and triplet) singly excited states of closed-shell systems. In the latter case, we rely on a minimalist version of multireference CC known as the two-determinant CCSD method to compute the excited states. Our data set, consisting of 276 excited states stemming from the quest database [Véril et al., WIREs Comput. Mol. Sci. 2021, 11, e1517], provides a significant base to draw general conclusions concerning the accuracy of ΔCCSD. Except for the doubly excited states, we found that ΔCCSD underperforms EOM-CCSD. For doublet-doublet transitions, the difference between the mean absolute errors (MAEs) of the two methodologies (of 0.10 and 0.07 eV) is less pronounced than that obtained for singly excited states of closed-shell systems (MAEs of 0.15 and 0.08 eV). This discrepancy is largely attributed to a greater number of excited states in the latter set exhibiting multiconfigurational characters, which are more challenging for ΔCCSD. We also found typically small improvements by employing state-specific optimized orbitals.

4.
J Chem Phys ; 159(11)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732558

RESUMEN

In this work, we develop a mathematical framework for a selected configuration interaction (SCI) algorithm within a bi-orthogonal basis for transcorrelated (TC) calculations. The bi-orthogonal basis used here serves as the equivalent of the standard Hartree-Fock (HF) orbitals. However, within the context of TC, it leads to distinct orbitals for the left and right vectors. Our findings indicate that the use of such a bi-orthogonal basis allows for a proper definition of the frozen core approximation. In contrast, the use of HF orbitals results in bad error cancellations for ionization potentials and atomization energies (AE). Compared to HF orbitals, the optimized bi-orthogonal basis significantly reduces the positive part of the second-order energy (PT2), thereby facilitating the use of standard extrapolation techniques of hermitian SCI. While we did not observe a significant improvement in the convergence of the SCI algorithm, this is largely due to the use in this work of a simple three-body correlation factor introduced in a recent study. This correlation factor, which depends only on atomic parameters, eliminates the need for re-optimization of the correlation factor for molecular systems, making its use straightforward and user-friendly. Despite the simplicity of this correlation factor, we were able to achieve accurate results on the AE of a series of 14 molecules on a triple-zeta basis. We also successfully broke a double bond until the full dissociation limit while maintaining the size consistency property. This work thus demonstrates the potential of the BiO-TC-SCI approach in handling complex molecular systems.

5.
J Chem Theory Comput ; 19(15): 4883-4896, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390472

RESUMEN

We introduce a novel three-body correlation factor that is designed to vanish in the core region around each nucleus and approach a universal two-body correlation factor for valence electrons. The transcorrelated Hamiltonian is used to optimize the orbitals of a single Slater determinant within a biorthonormal framework. The Slater-Jastrow wave function is optimized on a set of atomic and molecular systems containing both second-row elements and 3d transition metal elements. The optimization of the correlation factor and the orbitals, along with an increase in the basis set, results in a systematic lowering of the variational Monte Carlo energy for all systems tested. Importantly, the optimal parameters of the correlation factor obtained for atomic systems can be transferred to molecules. Additionally, the present correlation factor is computationally efficient and uses a mixed analytical-numerical integration scheme that reduces the costly numerical integration from R6 to R3.

6.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37144717

RESUMEN

TREXIO is an open-source file format and library developed for the storage and manipulation of data produced by quantum chemistry calculations. It is designed with the goal of providing a reliable and efficient method of storing and exchanging wave function parameters and matrix elements, making it an important tool for researchers in the field of quantum chemistry. In this work, we present an overview of the TREXIO file format and library. The library consists of a front-end implemented in the C programming language and two different back-ends: a text back-end and a binary back-end utilizing the hierarchical data format version 5 library, which enables fast read and write operations. It is compatible with a variety of platforms and has interfaces for Fortran, Python, and OCaml programming languages. In addition, a suite of tools have been developed to facilitate the use of the TREXIO format and library, including converters for popular quantum chemistry codes and utilities for validating and manipulating data stored in TREXIO files. The simplicity, versatility, and ease of use of TREXIO make it a valuable resource for researchers working with quantum chemistry data.

7.
J Chem Theory Comput ; 19(1): 221-234, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548519

RESUMEN

We report ground- and excited-state dipole moments and oscillator strengths (computed in different "gauges" or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CC with singles and doubles (CCSD) to CC with singles, doubles, and triples (CCSDT) or from CCSDT to CC with singles, doubles, triples, and quadruples (CCSDTQ)) reduces the average error with respect to the near-FCI reference values by approximately 1 order of magnitude.

8.
J Chem Phys ; 157(13): 134107, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209011

RESUMEN

In this work, we present an extension of popular selected configuration interaction (SCI) algorithms to the Transcorrelated (TC) framework. Although we used in this work the recently introduced one-parameter correlation factor [E. Giner, J. Chem. Phys. 154, 084119 (2021)], the theory presented here is valid for any correlation factor. Thanks to the formalization of the non-Hermitian TC eigenvalue problem as a search of stationary points for a specific functional depending on both left- and right-functions, we obtain a general framework, allowing for different choices for both the selection criterion in SCI and the second order perturbative correction to the energy. After numerical investigations on different second-row atomic and molecular systems in increasingly large basis sets, we found that taking into account the non-Hermitian character of the TC Hamiltonian in the selection criterion is mandatory to obtain a fast convergence of the TC energy. In addition, selection criteria based on either the first order coefficient or the second order energy lead to significantly different convergence rates, which is typically not the case in the usual Hermitian SCI. Regarding the convergence of the total second order perturbation energy, we find that the quality of the left-function used in the equations strongly affects the quality of the results. Within the near-optimal algorithm proposed here, we find that the SCI expansion in the TC framework converges faster than the usual SCI in terms of both the basis set and the number of Slater determinants.

9.
J Chem Theory Comput ; 18(11): 6722-6731, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36314602

RESUMEN

We show that recently developed quantum Monte Carlo methods, which provide accurate vertical transition energies for single excitations, also successfully treat double excitations. We study the double excitations in medium-sized molecules, some of which are challenging for high-level coupled-cluster calculations to model accurately. Our fixed-node diffusion Monte Carlo excitation energies are in very good agreement with reliable benchmarks, when available, and provide accurate predictions for excitation energies of difficult systems where reference values are lacking.

10.
J Chem Theory Comput ; 18(9): 5325-5336, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997484

RESUMEN

We present a new method for the optimization of large configuration interaction (CI) expansions in the quantum Monte Carlo (QMC) framework. The central idea here is to replace the nonorthogonal variational optimization of CI coefficients performed in usual QMC calculations by an orthogonal non-Hermitian optimization thanks to the so-called transcorrelated (TC) framework, the two methods yielding the same results in the limit of a complete basis set. By rewriting the TC equations as an effective self-consistent Hermitian problem, our approach requires the sampling of a single quantity per Slater determinant, leading to minimal memory requirements in the QMC code. Using analytical quantities obtained from both the TC framework and the usual CI-type calculations, we also propose improved estimators which reduce the statistical fluctuations of the sampled quantities by more than an order of magnitude. We demonstrate the efficiency of this method on wave functions containing 105-106 Slater determinants, using effective core potentials or all-electron calculations. In all the cases, a sub-milli-Hartree convergence is reached within only two or three iterations of optimization.

11.
J Phys Chem A ; 126(28): 4664-4679, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35820169

RESUMEN

Cyclobutadiene is a well-known playground for theoretical chemists and is particularly suitable to test ground- and excited-state methods. Indeed, due to its high spatial symmetry, especially at the D4h square geometry but also in the D2h rectangular arrangement, the ground and excited states of cyclobutadiene exhibit multiconfigurational characters and single-reference methods, such as standard adiabatic time-dependent density-functional theory (TD-DFT) or standard equation-of-motion coupled cluster (EOM-CC), are notoriously known to struggle in such situations. In this work, using a large panel of methods and basis sets, we provide an extensive computational study of the automerization barrier (defined as the difference between the square and rectangular ground-state energies) and the vertical excitation energies at D2h and D4h equilibrium structures. In particular, selected configuration interaction (SCI), multireference perturbation theory (CASSCF, CASPT2, and NEVPT2), and coupled-cluster (CCSD, CC3, CCSDT, CC4, and CCSDTQ) calculations are performed. The spin-flip formalism, which is known to provide a qualitatively correct description of these diradical states, is also tested within TD-DFT (combined with numerous exchange-correlation functionals) and the algebraic diagrammatic construction [ADC(2)-s, ADC(2)-x, and ADC(3)]. A theoretical best estimate is defined for the automerization barrier and for each vertical transition energy.

12.
J Chem Phys ; 156(23): 234302, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732523

RESUMEN

Probabilities to find a chosen number of electrons in flexible domains of space are calculated for highly correlated wave functions. Quantum mechanics can produce higher probabilities for chemically relevant arrangements of electrons in these regions. However, the probability to have a given arrangement, e.g., that corresponding to chemical formulas (bonds or atoms), is low although being often maximal. Like in valence bond theory, it is useful to consider alternative distributions of electrons. Exchanges of electrons should be considered not only between atoms but also between other types of regions, such as those attributed to lone pairs. It is useful to have definitions flexible enough to allow users to find the most relevant representations. We tentatively suggest a tool (the effective number of parties) to help one make the choice.

13.
J Chem Theory Comput ; 18(2): 1089-1095, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35080893

RESUMEN

We revisit here the lowest vertical excitations of cyanine dyes using quantum Monte Carlo and leverage recent developments to systematically improve on previous results. In particular, we employ a protocol for the construction of compact and accurate multideterminant Jastrow-Slater wave functions for multiple states, which we have recently validated on the excited-state properties of several small prototypical molecules. Here, we obtain quantum Monte Carlo excitation energies in excellent agreement with high-level coupled cluster for all the cyanines where the coupled cluster method is applicable. Furthermore, we push our protocol to longer chains, demonstrating that quantum Monte Carlo is a viable methodology to establish reference data at system sizes which are hard to reach with other high-end approaches of similar accuracy. Finally, we determine which ingredients are key to an accurate treatment of these challenging systems and rationalize why a description of the excitation based on only active π orbitals lacks the desired accuracy for the shorter chains.

14.
J Chem Phys ; 155(13): 134104, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624964

RESUMEN

Following our recent work on the benzene molecule [P.-F. Loos, Y. Damour, and A. Scemama, J. Chem. Phys. 153, 176101 (2020)], motivated by the blind challenge of Eriksen et al. [J. Phys. Chem. Lett. 11, 8922 (2020)] on the same system, we report accurate full configuration interaction (FCI) frozen-core correlation energy estimates for 12 five- and six-membered ring molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, s-tetrazine, and s-triazine) in the standard correlation-consistent double-ζ Dunning basis set (cc-pVDZ). Our FCI correlation energy estimates, with an estimated error smaller than 1 millihartree, are based on energetically optimized-orbital selected configuration interaction calculations performed with the configuration interaction using a perturbative selection made iteratively algorithm. Having at our disposal these accurate reference energies, the respective performance and convergence properties of several popular and widely used families of single-reference quantum chemistry methods are investigated. In particular, we study the convergence properties of (i) the Møller-Plesset perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), (ii) the iterative approximate coupled-cluster series CC2, CC3, and CC4, and (iii) the coupled-cluster series CCSD, CCSDT, and CCSDTQ. The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized CC model, CR-CC(2,3), is also investigated. We show that MP4 provides an interesting accuracy/cost ratio, while MP5 systematically worsens the correlation energy estimates. In addition, CC3 outperforms CCSD(T) and CR-CC(2,3), as well as its more expensive parent CCSDT. A similar trend is observed for the methods including quadruple excitations, where the CC4 model is shown to be slightly more accurate than CCSDTQ, both methods providing correlation energies within 2 millihartree of the FCI limit.

15.
J Chem Theory Comput ; 17(8): 4756-4768, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310140

RESUMEN

The pair coupled cluster doubles (pCCD) method (where the excitation manifold is restricted to electron pairs) has a series of interesting features. Among others, it provides ground-state energies very close to what is obtained with doubly occupied configuration interaction (DOCI), but with a polynomial cost (compared with the exponential cost of the latter). Here, we address whether this similarity holds for excited states by exploring the symmetric dissociation of the linear H4 molecule. When ground-state Hartree-Fock (HF) orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease by 1 or 2 orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We also assessed whether a pCCD approach could be used to directly target doubly excited states, without having to resort to the equation-of-motion (EOM) formalism. In our Δoo-pCCD model, excitation energies are extracted from the energy difference between separate oo-pCCD calculations for the ground state and the targeted excited state. For a set comprising the doubly excited states of CH+, BH, nitroxyl, nitrosomethane, and formaldehyde, we found that Δoo-pCCD provides quite accurate excitation energies, with root-mean-square deviations (with respect to full configuration interaction results) lower than those of CC3 and comparable to those of EOM-CCSDT, two methods with a much higher computational cost.

16.
J Chem Theory Comput ; 17(6): 3426-3434, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34029098

RESUMEN

The perturbatively selected configuration interaction scheme (CIPSI) is particularly effective in constructing determinantal expansions for quantum Monte Carlo (QMC) simulations with Jastrow-Slater wave functions: fast and smooth convergence of ground-state properties and balanced descriptions of ground and excited states of different symmetries have been reported. In particular, accurate excitation energies have been obtained by the pivotal requirement of using CIPSI expansions with similar second-order perturbation corrections for each state, that is, a similar estimated distance to the full configuration interaction limit. Here, we elaborate on the CIPSI selection criterion for excited states of the same symmetry as the ground state, generating expansions from a common orbital set. Using these expansions in QMC as determinantal components of Jastrow-Slater wave functions, we compute the lowest, bright excited state of thiophene, which is challenging due to its significant multireference character. The resulting vertical excitation energies are within 0.05 eV of the best theoretical estimates, already with expansions of only a few thousand determinants. Furthermore, we relax the ground- and excited-state structures following the corresponding root in variational Monte Carlo and obtain bond lengths that are accurate to better than 0.01 Å. Therefore, while the full treatment at the CIPSI level of this system is quite demanding, in QMC, we can compute high-quality excitation energies and excited-state structural parameters building on affordable CIPSI expansions with relatively few, well-chosen determinants.

17.
J Chem Phys ; 153(18): 184111, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187421

RESUMEN

While Diffusion Monte Carlo (DMC) is in principle an exact stochastic method for ab initio electronic structure calculations, in practice, the fermionic sign problem necessitates the use of the fixed-node approximation and trial wavefunctions with approximate nodes (or zeros). This approximation introduces a variational error in the energy that potentially can be tested and systematically improved. Here, we present a computational method that produces trial wavefunctions with systematically improvable nodes for DMC calculations of periodic solids. These trial wavefunctions are efficiently generated with the configuration interaction using a perturbative selection made iteratively (CIPSI) method. A simple protocol in which both exact and approximate results for finite supercells are used to extrapolate to the thermodynamic limit is introduced. This approach is illustrated in the case of the carbon diamond using Slater-Jastrow trial wavefunctions including up to one million Slater determinants. Fixed-node DMC energies obtained with such large expansions are much improved, and the fixed-node error is found to decrease monotonically and smoothly as a function of the number of determinants in the trial wavefunction, a property opening the way to a better control of this error. The cohesive energy extrapolated to the thermodynamic limit is in close agreement with the estimated experimental value. Interestingly, this is also the case at the single-determinant level, thus, indicating a very good error cancellation in carbon diamond between the bulk and atomic total fixed-node energies when using single-determinant nodes.

18.
J Chem Phys ; 153(17): 176101, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33167654

RESUMEN

Following the recent work of Eriksen et al. [J. Phys. Chem. Lett. 11, 8922 (2020)], we report the performance of the configuration interaction using a perturbative selection made iteratively method on the non-relativistic frozen-core correlation energy of the benzene molecule in the cc-pVDZ basis. Following our usual protocol, we obtain a correlation energy of -863.4 mEh, which agrees with the theoretical estimate of -863 mEh proposed by Eriksen et al. [J. Phys. Chem. Lett. 11, 8922 (2020)] using an extensive array of highly accurate new electronic structure methods.

19.
J Chem Phys ; 153(17): 174107, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33167659

RESUMEN

By combining density-functional theory (DFT) and wave function theory via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction known as configuration interaction using a perturbative selection made iteratively (CIPSI), a scheme that we label RS-DFT-CIPSI. One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of µ = 0.5 bohr-1 provides effective error cancellations as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems.

20.
J Chem Phys ; 152(17): 174104, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32384859

RESUMEN

We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the electron-electron Coulomb interaction projected in the finite basis set. This enables the use of RSDFT-type complementary density functionals to recover the dominant part of the short-range correlation effects missing in this finite basis set. To study both weak and strong correlation regimes, we consider the potential energy curves of the H10, N2, O2, and F2 molecules up to the dissociation limit, and we explore various approximations of complementary functionals fulfilling two key properties: spin-multiplet degeneracy (i.e., independence of the energy with respect to the spin projection Sz) and size consistency. Specifically, we investigate the dependence of the functional on different types of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-ζ quality basis sets for most of the systems studied here. In addition, the present basis-set incompleteness correction provides smooth potential energy curves along the whole range of internuclear distances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...