Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Work Expo Health ; 68(5): 510-521, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551971

RESUMEN

OBJECTIVES: In the cement production industry, exposure to airborne particulate matter is associated with a decline in lung function and increased airway symptoms. Exposure to clinker-the major constituent of cement and supposedly the cause of the observed adverse health effects-was determined recently in 15 cement production plants located in 8 different countries (Estonia, Greece, Italy, Norway, Sweden, Switzerland, Spain, Turkey). It was shown that the median clinker abundance in the thoracic fraction varied between approximately 20% and 70% for individual plants. The present study complements the previous work by investigating the significance of job function as a determinant of clinker exposure. METHODS: The elemental composition (water and acid-soluble fractions separately) of 1,227 personal thoracic workplace samples was analyzed by positive matrix factorization (PMF) to determine the contribution of different sources to the composition of airborne particulate matter and to quantify the clinker content. RESULTS: Median thoracic mass air concentrations varied for individual job functions between 0.094 and 12 mg/m3 (estimated separately for different plants). The PMF 5-factor solution yielded median relative clinker abundances in the personal thoracic samples between 7.6% and 81% for individual job functions. Thoracic clinker air concentrations are highest for cleaning, production, and maintenance work, and lowest for administration and other work. Foremen and laboratory personnel show intermediate exposure levels. The plant was found to have a much higher contribution to the total variance of the thoracic clinker air concentrations than the job function. Thoracic clinker air concentrations (medians between 0.01 and 5.5 mg/m3) are strongly correlated with the thoracic mass air concentrations and to a lesser extent with the relative clinker abundance in an aerosol sample. CONCLUSIONS: Job function is an important predictor of exposure to clinker in the cement production industry. As clinker is suspected to be the causal agent for the observed adverse health effects among cement production workers, the clinker air concentration may be a better exposure metric than thoracic air mass concentration despite the strong correlation between the two. Reduction strategies should focus on the most exposed job categories cleaning, production, and maintenance work.


Asunto(s)
Contaminantes Ocupacionales del Aire , Materiales de Construcción , Exposición Profesional , Material Particulado , Lugar de Trabajo , Exposición Profesional/análisis , Humanos , Materiales de Construcción/análisis , Contaminantes Ocupacionales del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Exposición por Inhalación/análisis , Europa (Continente)
2.
Ann Work Expo Health ; 67(5): 609-621, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866437

RESUMEN

OBJECTIVES: Cement belongs to the most used building materials. Clinker is the major constituent of cement, and it is believed that the strong increase of pH after hydration of clinker minerals is responsible for the observed decline in lung function of cement production workers. Information on clinker exposure at workplaces in the cement production industry is scarse. The aims of this study are to determine the chemical composition of thoracic dust and to quantify workplace exposure to clinker in cement production. METHODS: The elemental composition of 1250 personal thoracic samples collected at workplaces in 15 plants located in 8 different countries (Estonia, Greece, Italy, Norway, Sweden, Switzerland, Spain, Turkey) was determined by inductively coupled plasma optical emission spectrometry (ICP-OES), separately for water- and acid-soluble fraction. Positive matrix factorization (PMF) was used to determine the contribution of different sources to the dust composition and to quantify the clinker content in 1227 of the thoracic samples. In addition, 107 material samples were analysed to facilitate interpretation of the factors obtained by PMF. RESULTS: The median thoracic mass concentrations varied for individual plants between 0.28 and 3.5 mg/m3. PMF with 8 water-soluble and 10 insoluble (i.e., acid-soluble) element concentrations yielded a five-factor solution: Ca, K, Na sulfates; silicates; insoluble clinker; soluble clinker-rich; and soluble Ca-rich. The clinker content of the samples was calculated as sum of the insoluble clinker and soluble clinker-rich factors. The median clinker fraction of all samples was 45% (range 0-95%), and varied between 20% and 70% for individual plants. DISCUSSION: The 5-factor solution of PMF was selected on the basis of several mathematical parameters recommended in the literature as well as the mineralogical interpretability of the factors. In addition, interpretation of the factors was supported by the measured apparent solubility of Al, K, Si, Fe, and to a lesser extent Ca in material samples. The total clinker content obtained in the present study is considerably lower than estimates based on the Ca concentrations in a sample, and somewhat lower than estimates based on Si concentrations after selective leaching with a methanol/maleic acid mixture. The clinker abundance in workplace dust of one plant investigated in the present contribution was also estimated in a recent study by electron microscopy, and the good agreement between both studies gives confidence in the results of PMF. CONCLUSIONS: The clinker fraction in personal thoracic samples could be quantified from the chemical composition by positive matrix factorization. Our results allow for further epidemiological analyses of health effects in the cement production industry. As these estimates are more accurate for clinker exposure than aerosol mass, stronger associations with respiratory effects are expected if clinker is the main cause of these effects.


Asunto(s)
Exposición Profesional , Humanos , Exposición Profesional/análisis , Polvo/análisis , Materiales de Construcción/análisis , Lugar de Trabajo , Industrias
3.
Environ Pollut ; 316(Pt 1): 120569, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347413

RESUMEN

It is a well - established fact that road traffic is one of the main contributors to ambient levels of airborne particulate matter (APM). This study was carried out at a traffic site in which the PM10 levels are monitored all year round. A trend analysis of these levels revealed that over a decade there was no discernible trend, with the PM10 concentrations normally hovering around the EU limit values. In 2018, one of these limit values was exceeded. The contribution of traffic at the site was therefore investigated through a chemical speciation of 209 PM10 samples collected throughout this year. The speciation data were used in a source apportionment exercise in which the output of the PMF model was further refined using the lesser-known, constraint weighted non - negative matrix factorization (CW - NMF) model. This technique enabled the isolation of two factors clearly related to traffic, which were labelled as "exhaust contribution" (responsible for 3.4% of the PM10), "tire/brake wear contribution" (contributing 17% of the PM10). Additionally, a factor including both traffic resuspended dust and crustal material was also isolated and labelled "road dust/crustal" factor. The two contributors to the factor jointly contribute 18% to the PM10 and the contribution of the traffic resuspended dust was estimated at 7.3%. The traffic resuspended component of this factor together with the "tire/brake wear contribution" jointly make up the non-exhaust contribution of traffic - derived dust. Consonant with what has been known for quite some time, the exhaust fraction is the minor component of traffic PM10. It is therefore, clear that policies aimed at controlling traffic derived PM10 pollution at the receptor will have a minimal effect unless the non - exhaust emissions are adequately controlled.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Emisiones de Vehículos/análisis , Europa (Continente)
4.
Chemosphere ; 236: 124376, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545188

RESUMEN

Results of a methodological study on the use of Positive Matrix Factorization (PMF) with smaller datasets are being reported in this work. This study is based on 29 PM10 and 33 PM2.5 samples from a receptor in a rural setup in Apulia (Southern Italy). Running PMF on the two size fractions separately resulted in the model not functioning correctly. We therefore, augmented the size of the dataset by aggregating the PM10 and PM2.5 data. The 5-factor solution obtained for the aggregated data was fairly rotationally stable, and was further refined by the rotational tools included in USEPA PMF version 5. These refinements include the imposition of constraints on the solution, based on our knowledge of the chemical composition of the aerosol sources affecting the receptor. Additionally, the uncertainties associated with this solution were fully characterised using the improved error estimation techniques in this version of PMF. Five factors in all, were isolated by PMF: ammonium sulfate, marine aerosol, mixed carbonaceous aerosol, crustal/Saharan dust and total traffic. The results obtained by PMF were further tested inter alia, by comparing them to those obtained by two other receptor modelling techniques: Constrained Weighted Non-negative Matrix Factorization (CW - NMF) and Chemical Mass Balance (CMB). The results of these tests suggest that the solution obtained by PMF, is valid, indicating that for this particular airshed PMF managed to extract most of the information about the aerosol sources affecting the receptor - even from a dataset with a limited number of samples.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Aerosoles/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Italia
6.
Chemosphere ; 211: 465-481, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30081219

RESUMEN

Receptor modelling techniques are widely used in order to identify the main natural and anthropogenic processes driving aerosol levels at a receptor. In this work, Positive Matrix Factorization (PMF) was used to apportion PM2.5 levels at a traffic site (Msida) located in a coastal town. 180 filters collected throughout a yearly sampling campaign conducted in 2016, were chemically characterized by light absorbance analysis, x-ray fluorescence and ion chromatography in order to determine the concentrations of black carbon, 17 elements and 5 ions, respectively. The resulting chemical data base was used in conjunction with PMF in order to identify the 7 components affecting the PM2.5 levels at the receptor site. Six of these sources are considered to be typical of the atmospheric composition of coastal traffic sites: traffic (27.3%), ammonium sulfate (23.6%), Saharan dust (15%), aged sea salt (12.7%), shipping (5%) and fresh sea salt (4.6%). This is the first time that such a study was carried out in Malta and helps in understanding the aerosol pollution climate of the Central Mediterranean, which is still relatively understudied when compared to the Eastern and Western Mediterranean. Furthermore, we have isolated a factor exclusive to Malta: the fireworks component, which is responsible for 2.9% of the PM2.5 and which has health implications due to its chemical composition. The results of this work should also serve to guide the policy makers in achieving the necessary emission reductions in order to achieve the WHO guideline for PM2.5 by 2020.


Asunto(s)
Contaminantes Atmosféricos/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Malta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...