Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 78(5): 975-985.e7, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32320643

RESUMEN

DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3'-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3'-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs.


Asunto(s)
Mapeo Cromosómico/métodos , Replicación del ADN/genética , Análisis de Secuencia de ADN/métodos , Cromatina , ADN/genética , Roturas del ADN de Cadena Simple , Daño del ADN/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Genoma/genética , Humanos , Nucleótidos , Saccharomyces cerevisiae/genética
2.
Nat Genet ; 50(8): 1132-1139, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30054595

RESUMEN

CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Anemia de Fanconi/genética , Transducción de Señal/genética , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Edición Génica/métodos , Genotipo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Células K562 , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA