Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 37(11-12): 505-517, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399331

RESUMEN

Messenger RNAs (mRNAs) are at the center of the central dogma of molecular biology. In eukaryotic cells, these long ribonucleic acid polymers do not exist as naked transcripts; rather, they associate with mRNA-binding proteins to form messenger ribonucleoprotein (mRNP) complexes. Recently, global proteomic and transcriptomic studies have provided comprehensive inventories of mRNP components. However, knowledge of the molecular features of distinct mRNP populations has remained elusive. We purified endogenous nuclear mRNPs from Saccharomyces cerevisiae by harnessing the mRNP biogenesis factors THO and Sub2 in biochemical procedures optimized to preserve the integrity of these transient ribonucleoprotein assemblies. We found that these mRNPs are compact particles that contain multiple copies of Yra1, an essential protein with RNA-annealing properties. To investigate their molecular and architectural organization, we used a combination of proteomics, RNA sequencing, cryo-electron microscopy, cross-linking mass spectrometry, structural models, and biochemical assays. Our findings indicate that yeast nuclear mRNPs are packaged around an intricate network of interconnected proteins capable of promoting RNA-RNA interactions via their positively charged intrinsically disordered regions. The evolutionary conservation of the major mRNA-packaging factor (yeast Yra1 and Aly/REF in metazoans) points toward a general paradigm governing nuclear mRNP packaging.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Microscopía por Crioelectrón , Proteómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleoproteínas/genética , ARN Mensajero/metabolismo
2.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34933920

RESUMEN

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Asunto(s)
Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Mutación con Ganancia de Función , Neuronas/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/ultraestructura , Proteínas Amiloidogénicas/ultraestructura , Supervivencia Celular/genética , Expresión Génica , Lisosomas/metabolismo , Lisosomas/ultraestructura , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/ultraestructura , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Transducción de Señal
3.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523989

RESUMEN

The chromatin-modifying histone deacetylases (HDACs) remove acetyl groups from acetyl-lysine residues in histone amino-terminal tails, thereby mediating transcriptional repression. Structural makeup and mechanisms by which multisubunit HDAC complexes recognize nucleosomes remain elusive. Our cryo-electron microscopy structures of the yeast class II HDAC ensembles show that the HDAC protomer comprises a triangle-shaped assembly of stoichiometry Hda12-Hda2-Hda3, in which the active sites of the Hda1 dimer are freely accessible. We also observe a tetramer of protomers, where the nucleosome binding modules are inaccessible. Structural analysis of the nucleosome-bound complexes indicates how positioning of Hda1 adjacent to histone H2B affords HDAC catalysis. Moreover, it reveals how an intricate network of multiple contacts between a dimer of protomers and the nucleosome creates a platform for expansion of the HDAC activities. Our study provides comprehensive insight into the structural plasticity of the HDAC complex and its functional mechanism of chromatin modification.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Microscopía por Crioelectrón , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 77(1): 150-163.e9, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31708416

RESUMEN

Cells respond to environmental changes by toggling metabolic pathways, preparing for homeostasis, and anticipating future stresses. For example, in Saccharomyces cerevisiae, carbon stress-induced gluconeogenesis is terminated upon glucose availability, a process that involves the multiprotein E3 ligase GIDSR4 recruiting N termini and catalyzing ubiquitylation of gluconeogenic enzymes. Here, genetics, biochemistry, and cryoelectron microscopy define molecular underpinnings of glucose-induced degradation. Unexpectedly, carbon stress induces an inactive anticipatory complex (GIDAnt), which awaits a glucose-induced substrate receptor to form the active GIDSR4. Meanwhile, other environmental perturbations elicit production of an alternative substrate receptor assembling into a related E3 ligase complex. The intricate structure of GIDAnt enables anticipating and ultimately binding various N-degron-targeting (i.e., "N-end rule") substrate receptors, while the GIDSR4 E3 forms a clamp-like structure juxtaposing substrate lysines with the ubiquitylation active site. The data reveal evolutionarily conserved GID complexes as a family of multisubunit E3 ubiquitin ligases responsive to extracellular stimuli.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Animales , Dominio Catalítico/fisiología , Línea Celular , Microscopía por Crioelectrón/métodos , Gluconeogénesis/fisiología , Glucosa/metabolismo , Humanos , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación/fisiología
5.
J Struct Biol ; 184(2): 203-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24135121

RESUMEN

In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin 'slices' (5-10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred µm(3) provides new insight into the close spatial connection of the ER-Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge "trans-ER" sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation.


Asunto(s)
Micrasterias/ultraestructura , Cuerpos Multivesiculares/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...