Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38582081

RESUMEN

Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.

2.
Mol Psychiatry ; 28(1): 497-514, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318461

RESUMEN

The transcription factor FOXG1 serves pleiotropic functions in brain development ranging from the regulation of precursor proliferation to the control of cortical circuit formation. Loss-of-function mutations and duplications of FOXG1 are associated with neurodevelopmental disorders in humans illustrating the importance of FOXG1 dosage for brain development. Aberrant FOXG1 dosage has been found to disrupt the balanced activity of glutamatergic and GABAergic neurons, but the underlying mechanisms are not fully understood. We report that FOXG1 is expressed in the main adult neurogenic niches in mice, i.e. the hippocampal dentate gyrus and the subependymal zone/olfactory bulb system, where neurogenesis of glutamatergic and GABAergic neurons persists into adulthood. These niches displayed differential vulnerability to increased FOXG1 dosage: high FOXG1 levels severely compromised survival and glutamatergic dentate granule neuron fate acquisition in the hippocampal neurogenic niche, but left neurogenesis of GABAergic neurons in the subependymal zone/olfactory bulb system unaffected. Comparative transcriptomic analyses revealed a significantly higher expression of the apoptosis-linked nuclear receptor Nr4a1 in FOXG1-overexpressing hippocampal neural precursors. Strikingly, pharmacological interference with NR4A1 function rescued FOXG1-dependent death of hippocampal progenitors. Our results reveal differential vulnerability of neuronal subtypes to increased FOXG1 dosage and suggest that activity of a FOXG1/NR4A1 axis contributes to such subtype-specific response.


Asunto(s)
Proteínas del Tejido Nervioso , Trastornos del Neurodesarrollo , Animales , Ratones , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Humanos
3.
EMBO J ; 39(21): e104472, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929771

RESUMEN

In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult-born neurons. We investigated the role of canonical Wnt/ß-catenin signaling in dendritogenesis of adult-born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing ß-catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle-aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of ß-catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of ß-catenin signaling are essential for the correct functional integration of adult-born neurons and suggest Wnt/ß-catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Envejecimiento/metabolismo , Animales , Proteína Axina/genética , Femenino , Hipocampo/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Vía de Señalización Wnt , beta Catenina/genética
4.
Cereb Cortex ; 30(6): 3731-3743, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32080705

RESUMEN

Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.


Asunto(s)
Giro Dentado/metabolismo , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica , Plasticidad Neuronal/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Animales , Electrochoque , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción SOXC/metabolismo
5.
Front Mol Neurosci ; 12: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853890

RESUMEN

Mitochondria are key organelles in regulating the metabolic state of a cell. In the brain, mitochondrial oxidative metabolism is the prevailing mechanism for neurons to generate ATP. While it is firmly established that neuronal function is highly dependent on mitochondrial metabolism, it is less well-understood how astrocytes function rely on mitochondria. In this study, we investigate if astrocytes require a functional mitochondrial electron transport chain (ETC) and oxidative phosphorylation (oxPhos) under physiological and injury conditions. By immunohistochemistry we show that astrocytes expressed components of the ETC and oxPhos complexes in vivo. Genetic inhibition of mitochondrial transcription by conditional deletion of mitochondrial transcription factor A (Tfam) led to dysfunctional ETC and oxPhos activity, as indicated by aberrant mitochondrial swelling in astrocytes. Mitochondrial dysfunction did not impair survival of astrocytes, but caused a reactive gliosis in the cortex under physiological conditions. Photochemically initiated thrombosis induced ischemic stroke led to formation of hyperfused mitochondrial networks in reactive astrocytes of the perilesional area. Importantly, mitochondrial dysfunction significantly reduced the generation of new astrocytes and increased neuronal cell death in the perilesional area. These results indicate that astrocytes require a functional ETC and oxPhos machinery for proliferation and neuroprotection under injury conditions.

6.
Sci Rep ; 8(1): 16196, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385877

RESUMEN

The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11's activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11's transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.


Asunto(s)
Morfogénesis/genética , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Animales , Núcleos Cerebelosos/crecimiento & desarrollo , Núcleos Cerebelosos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dendritas/genética , Dendritas/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Espectrometría de Masas , Ratones , Fosforilación/genética , Serina/genética
7.
Neuron ; 99(6): 1188-1203.e6, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30197237

RESUMEN

Autophagy is a conserved catabolic pathway with emerging functions in mammalian neurodevelopment and human neurodevelopmental diseases. The mechanisms controlling autophagy in neuronal development are not fully understood. Here, we found that conditional deletion of the Forkhead Box O transcription factors FoxO1, FoxO3, and FoxO4 strongly impaired autophagic flux in developing neurons of the adult mouse hippocampus. Moreover, FoxO deficiency led to altered dendritic morphology, increased spine density, and aberrant spine positioning in adult-generated neurons. Strikingly, pharmacological induction of autophagy was sufficient to correct abnormal dendrite and spine development of FoxO-deficient neurons. Collectively, these findings reveal a novel link between FoxO transcription factors, autophagic flux, and maturation of developing neurons.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Forkhead/metabolismo , Morfogénesis/fisiología , Neurogénesis/fisiología , Animales , Separación Celular/métodos , Células Cultivadas , Ratones Transgénicos , Neuronas/metabolismo
9.
Neuron ; 93(3): 560-573.e6, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28111078

RESUMEN

Precise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell. Perturbation of mitochondrial complex function by ablation of the mitochondrial transcription factor A (Tfam) reproduces multiple hallmarks of aging in hippocampal neurogenesis, whereas pharmacological enhancement of mitochondrial function ameliorates age-associated neurogenesis defects. Together with the finding of age-associated alterations in mitochondrial function and morphology in NSCs, these data link mitochondrial complex function to efficient lineage progression of adult NSCs and identify mitochondrial function as a potential target to ameliorate neurogenesis-defects in the aging hippocampus.


Asunto(s)
Células Madre Adultas/metabolismo , Envejecimiento/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Neurogénesis , Neuronas/metabolismo , Células Madre Adultas/citología , Animales , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Hipocampo/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales , Neuronas/citología , Fosforilación Oxidativa
10.
Nat Commun ; 6: 8466, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26506265

RESUMEN

As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood-brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antiasmáticos/administración & dosificación , Encéfalo/efectos de los fármacos , Adulto , Factores de Edad , Envejecimiento/fisiología , Animales , Encéfalo/fisiología , Cognición , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Masculino , Aprendizaje por Laberinto , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Endogámicas F344 , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Adulto Joven
11.
J Neurosci ; 34(19): 6624-33, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806687

RESUMEN

Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Mitocondrias/fisiología , Células-Madre Neurales/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Recuento de Células , Diferenciación Celular/fisiología , Dendritas/fisiología , Dendritas/ultraestructura , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Dinaminas/biosíntesis , Dinaminas/genética , Femenino , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Neurogénesis/fisiología , Técnicas Estereotáxicas
12.
Stem Cell Reports ; 2(2): 153-62, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24527389

RESUMEN

We describe the labeling of adult neural stem cells (aNSCs) in the mouse and human dentate gyrus (DG) by the combinatorial expression of glial fibrillary acidic protein (GFAP) and Prominin1, as revealed by immunohistochemistry. Split-Cre-based genetic fate mapping of these double-positive cells in the adult murine DG reveals their NSC identity, as they are self-renewing and contribute to neurogenesis over several months. Their progeny reacts to stimuli such as voluntary exercise with increased neurogenesis. Prominin1+/GFAP+ cells also exist in the adult human DG, the only region in the human brain for which adult neurogenesis has been consistently reported. Our data, together with previous evidence of such double-positive NSCs in the developing murine brain and in neurogenic regions of vertebrates with widespread neurogenesis, suggest that Prominin1- and GFAP-expressing cells are NSCs in a wide range of species in development and adulthood.


Asunto(s)
Células Madre Adultas/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Marcación de Gen , Recombinación Homóloga , Células-Madre Neurales/metabolismo , Antígeno AC133 , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Expresión Génica , Genes Reporteros , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Neuroglía/metabolismo , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas
13.
J Neurosci ; 30(41): 13794-807, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20943920

RESUMEN

The generation of new neurons from neural stem cells in the adult hippocampal dentate gyrus contributes to learning and mood regulation. To sustain hippocampal neurogenesis throughout life, maintenance of the neural stem cell pool has to be tightly controlled. We found that the Notch/RBPJκ-signaling pathway is highly active in neural stem cells of the adult mouse hippocampus. Conditional inactivation of RBPJκ in neural stem cells in vivo resulted in increased neuronal differentiation of neural stem cells in the adult hippocampus at an early time point and depletion of the Sox2-positive neural stem cell pool and suppression of hippocampal neurogenesis at a later time point. Moreover, RBPJκ-deficient neural stem cells displayed impaired self-renewal in vitro and loss of expression of the transcription factor Sox2. Interestingly, we found that Notch signaling increases Sox2 promoter activity and Sox2 expression in adult neural stem cells. In addition, activated Notch and RBPJκ were highly enriched on the Sox2 promoter in adult hippocampal neural stem cells, thus identifying Sox2 as a direct target of Notch/RBPJκ signaling. Finally, we found that overexpression of Sox2 can rescue the self-renewal defect in RBPJκ-deficient neural stem cells. These results identify RBPJκ-dependent pathways as essential regulators of adult neural stem cell maintenance and suggest that the actions of RBPJκ are, at least in part, mediated by control of Sox2 expression.


Asunto(s)
Células Madre Adultas/metabolismo , Hipocampo/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neuronas/metabolismo , Animales , Western Blotting , Recuento de Células , Inmunoprecipitación de Cromatina , Femenino , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Neurogénesis/fisiología , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...