Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(5): 2322-2337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634161

RESUMEN

Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.


Asunto(s)
Flores , Melastomataceae , Polinización , Polinización/fisiología , Flores/fisiología , Flores/anatomía & histología , Melastomataceae/fisiología , Abejas/fisiología , Animales , Filogenia , Especificidad de la Especie , Modelos Biológicos
2.
Nat Commun ; 15(1): 1237, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336937

RESUMEN

Since the insights by Charles Darwin, heterostyly, a floral polymorphism with morphs bearing stigmas and anthers at reciprocal heights, has become a model system for the study of natural selection. Based on his archetypal heterostylous flower, including regular symmetry, few stamens and a tube, Darwin hypothesised that heterostyly evolved to promote outcrossing through efficient pollen transfer between morphs involving different areas of a pollinator's body, thus proposing his seminal pollination-precision hypothesis. Here we update the number of heterostylous and other style-length polymorphic taxa to 247 genera belonging to 34 families, notably expanding known cases by 20%. Using phylogenetic and comparative analyses across the angiosperms, we show numerous independent origins of style-length polymorphism associated with actinomorphic, tubular flowers with a low number of sex organs, stamens fused to the corolla, and pollination by long-tongued insects. These associations provide support for the Darwinian pollination-precision hypothesis as a basis for convergent evolution of heterostyly across angiosperms.


Asunto(s)
Magnoliopsida , Polinización , Humanos , Polinización/genética , Filogenia , Magnoliopsida/genética , Polen , Polimorfismo Genético , Flores/genética
3.
New Phytol ; 241(3): 1348-1360, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029781

RESUMEN

Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).


Asunto(s)
Magnoliopsida , Filogenia , Magnoliopsida/genética , Flores/anatomía & histología , Fósiles , Reproducción , Evolución Biológica
4.
Am J Bot ; 110(8): e16213, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37459475

RESUMEN

PREMISE: Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors. METHODS: Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating "rate profiles" for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set. RESULTS: The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades. CONCLUSIONS: Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.


Asunto(s)
Ericales , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/anatomía & histología , Evolución Biológica , Filogenia , Flores/genética , Flores/anatomía & histología
5.
Am J Bot ; 110(6): e16183, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37276141

RESUMEN

PREMISE: Floral shape (relative arrangement and position of floral organs) is critical in mediating fit with pollinators and maximizing conspecific pollen transfer particularly in functionally specialized systems. To date, however, few studies have attempted to quantify flowers as the inherently three-dimensional (3D) structures they are and determine the effect of intraspecific shape variation on pollen transfer. We here addressed this research gap using a functionally specialized system, buzz pollination, in which bees extract pollen through vibrations, as a model. Our study species, Meriania hernandoi (Melastomataceae), undergoes a floral shape change from pseudocampanulate corollas with more actinomorphically arranged stamens (first day) to open corollas with a more zygomorphic androecium (second day) over anthesis, providing a natural experiment to test how variation in floral shape affects pollination performance. METHODS: In one population of M. hernandoi, we bagged 51 pre-anthetic flowers and exposed half of them to bee pollinators when they were in either stage of their shape transition. We then collected flowers, obtained 3D flower models through x-ray computed tomography for 3D geometric morphometric analyses, and counted the pollen grains remaining per stamen (male pollination performance) and stigmatic pollen loads (female pollination performance). RESULTS: Male pollination performance was significantly higher in open flowers with zygomorphic androecia than in pseudo-campanulate flowers. Female pollination performance did not differ among floral shapes. CONCLUSIONS: These results suggest that there is an "optimal" shape for male pollination performance, while the movement of bees around the flower when buzzing the spread-out stamens results in sufficient pollen deposition regardless of floral shape.


Asunto(s)
Melastomataceae , Abejas , Animales , Flores , Polinización , Polen , Lagunas en las Evidencias
6.
iScience ; 26(4): 106362, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37034980

RESUMEN

Species diversity can vary dramatically across lineages due to differences in speciation and extinction rates. Here, we explore the effects of several plant traits on diversification, finding that most traits have opposing effects on diversification. For example, outcrossing may increase the efficacy of selection and adaptation but also decrease mate availability, two processes with contrasting effects on lineage persistence. Such opposing trait effects can manifest as differences in diversification rates that depend on ecological context, spatiotemporal scale, and associations with other traits. The complexity of pathways linking traits to diversification suggests that the mechanistic underpinnings behind their correlations may be difficult to interpret with any certainty, and context dependence means that the effects of specific traits on diversification are likely to differ across multiple lineages and timescales. This calls for taxonomically and context-controlled approaches to studies that correlate traits and diversification.

7.
Syst Biol ; 72(4): 837-855, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-36995161

RESUMEN

Fossils are essential to infer past evolutionary processes. The assignment of fossils to extant clades has traditionally relied on morphological similarity and on apomorphies shared with extant taxa. The use of explicit phylogenetic analyses to establish fossil affinities has so far remained limited. In this study, we built a comprehensive framework to investigate the phylogenetic placement of 24 exceptionally preserved fossil flowers. For this, we assembled a new species-level data set of 30 floral traits for 1201 extant species that were sampled to capture the stem and crown nodes of all angiosperm families. We explored multiple analytical approaches to integrate the fossils into the phylogeny, including different phylogenetic estimation methods, topological-constrained analyses, and combining molecular and morphological data of extant and fossil species. Our results were widely consistent across approaches and showed minor differences in the support of fossils at different phylogenetic positions. The placement of some fossils agrees with previously suggested relationships, but for others, a new placement is inferred. We also identified fossils that are well supported within particular extant families, whereas others showed high phylogenetic uncertainty. Finally, we present recommendations for future analyses combining molecular and morphological evidence, regarding the selection of fossils and appropriate methodologies, and provide some perspectives on how to integrate fossils into the investigation of divergence times and the temporal evolution of morphological traits. [Angiosperms; fossil flowers; phylogenetic uncertainty; RoguePlots.].


Asunto(s)
Fósiles , Magnoliopsida , Humanos , Filogenia , Magnoliopsida/genética , Tiempo , Flores/genética , Evolución Biológica
8.
Ecol Lett ; 26(4): 640-657, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36829296

RESUMEN

Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.


Asunto(s)
Evolución Biológica , Magnoliopsida , Filogenia , Ecosistema , Magnoliopsida/genética , Fenotipo , Especiación Genética , Biodiversidad
9.
Curr Biol ; 32(21): 4688-4698.e6, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36198321

RESUMEN

Angiosperm flowers and their animal visitors have co-evolved for at least 140 Ma, and early flowers were likely used mainly as mating and feeding sites by several groups of insects, including beetles, flies, true bugs, and thrips. Earlier studies suggested that shifts from such neutral or antagonistic relationships toward mutualistic pollination interactions between flowers and insects occurred repeatedly during angiosperm evolution. However, the evolutionary mechanisms and adaptations, which accompanied shifts toward effective pollination, are barely understood, and evidence for such scenarios has been lacking. Here, we show that Syngonium hastiferum (Araceae), a Neotropical representative of an otherwise beetle-pollinated clade, is pollinated by plant bugs (Miridae; Heteroptera), which are florivores of Syngonium schottianum and other Araceae species. We found that S. hastiferum differs in several floral traits from its beetle-pollinated relatives. Scent emission and thermogenesis occur in the morning instead of the evening hours, and its pollen surface is spiny instead of smooth. Furthermore, the floral scent of S. hastiferum includes a previously unknown natural product, (Z)-3-isopropylpent-3-en-1-ol, which we show to have a function in specifically attracting the plant bug pollinators. This is the first known case of a specialized plant bug pollination system and provides clear evidence for the hypothesis that the adoption of antagonistic florivores as pollinators can drive flower diversification. VIDEO ABSTRACT.


Asunto(s)
Araceae , Escarabajos , Heterópteros , Animales , Polinización , Flores , Insectos , Polen
10.
Front Plant Sci ; 13: 961906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212342

RESUMEN

Ranunculaceae comprise ca. 2,500 species (ca. 55 genera) that display a broad range of floral diversity, particularly at the level of the perianth. Petals, when present, are often referred to as "elaborate" because they have a complex morphology. In addition, the petals usually produce and store nectar, which gives them a crucial functional role in the interaction with pollinators. Its morphological diversity and species richness make this family a particularly suitable model group for studying the evolution of complex morphologies. Our aims are (1) to reconstruct the ancestral form of the petal and evolutionary stages at the scale of Ranunculaceae, (2) to test the hypothesis that there are morphogenetic regions on the petal that are common to all species and that interspecific morphological diversity may be due to differences in the relative proportions of these regions during development. We scored and analyzed traits (descriptors) that characterize in detail the complexity of mature petal morphology in 32 genera. Furthermore, we described petal development using high resolution X-Ray computed tomography (HRX-CT) in six species with contrasting petal forms (Ficaria verna, Helleborus orientalis, Staphisagria picta, Aconitum napellus, Nigella damascena, Aquilegia vulgaris). Ancestral state reconstruction was performed using a robust and dated phylogeny of the family, allowing us to produce new hypotheses for petal evolution in Ranunculaceae. Our results suggest a flat ancestral petal with a short claw for the entire family and for the ancestors of all tribes except Adonideae. The elaborate petals that are present in different lineages have evolved independently, and similar morphologies are the result of convergent evolution.

11.
Evolution ; 76(11): 2587-2604, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36128635

RESUMEN

Covarying suites of phenotypic traits, or modules, are increasingly recognized to promote morphological evolution. However, information on how modularity influences flower diversity is rare and lacking for Orchidaceae. Here, we combine high-resolution X-ray computed tomography scanning with three-dimensional geometric morphometrics and phylogenetic comparative methods to test various hypotheses about three-dimensional patterns of flower evolutionary modularity in Malagasy Bulbophyllum orchids and examine rates and modes of module evolution. Based on the four evolutionary modules identified (i.e., sepals, lateral petals, labellum + column-foot, and column-part), our data support the hypothesis that both genetic-developmental and functional adaptive factors shaped evolutionary flower trait covariation in these tropical orchids. In line with "evo-devo" studies, we also find that the labellum evolved independently from the rest of the petal whorl. Finally, we show that modules evolved with different rates, and either in a neutral fashion (only column-part) or under selective constraints, as likely imposed by pollinators. Overall, this study supports current views that modular units can enhance the range and rate of morphological evolution.


Asunto(s)
Flores , Orchidaceae , Filogenia , Flores/anatomía & histología , Orchidaceae/genética , Orchidaceae/anatomía & histología , Fenotipo , Evolución Biológica
12.
J Chem Ecol ; 48(3): 263-269, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35258745

RESUMEN

Flowering plants often use chemical signals to attract their pollinators, and compounds that elicit attraction are known for several groups of pollinators. For other pollinators such as gall midges, however, compounds responsible for their attraction to flowers are largely unknown. Here, we describe the pollination biology of Anthurium acutangulum, a Neotropical aroid species found to be attractive to gall midges. We collected and analyzed its floral scent by dynamic headspace collections and gas chromatography coupled to mass spectrometry, and identified compounds responsible for pollinator attraction. The inflorescences were almost exclusively visited by gall midges (females; Cecidomyiidae: Cecidomyiinae) and released a strong scent reminiscent of freshly cut cucumber, mainly (5S,7S)-trans-conophthorin, (E2,Z6)-2,6-nonadienal, and cis-conophthorin. Behavioral assays with the two most abundant compounds identified (E2,Z6)-2,6-nonadienal as being highly attractive to the female gall midge pollinators, whereas (5S,7S)-trans-conophthorin was not attractive. Overall, we introduce a new specialized gall midge pollination system and identify the chemical mediating communication between the pollinators and their host plants.


Asunto(s)
Araceae , Dípteros , Animales , Araceae/química , Femenino , Flores/química , Cromatografía de Gases y Espectrometría de Masas , Polinización
13.
Mol Ecol ; 31(8): 2264-2280, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35175652

RESUMEN

Animal pollinators mediate gene flow among plant populations, but in contrast to well-studied topographic and (Pleistocene) environmental isolating barriers, their impact on population genetic differentiation remains largely unexplored. Comparing how these multifarious factors drive microevolutionary histories is, however, crucial for better resolving macroevolutionary patterns of plant diversification. Here we combined genomic analyses with landscape genetics and niche modelling across six related Neotropical plant species (424 individuals across 33 localities) differing in pollination strategy to test the hypothesis that highly mobile (vertebrate) pollinators more effectively link isolated localities than less mobile (bee) pollinators. We found consistently higher genetic differentiation (FST ) among localities of bee- than vertebrate-pollinated species with increasing geographical distance, topographic barriers and historical climatic instability. High admixture among montane populations further suggested relative climatic stability of Neotropical montane forests during the Pleistocene. Overall, our results indicate that pollinators may differentially impact the potential for allopatric speciation, thereby critically influencing diversification histories at macroevolutionary scales.


Asunto(s)
Plantas , Polinización , Animales , Abejas/genética , Biología , Bosques , Geografía , Polinización/genética , Vertebrados
14.
Am J Bot ; 108(9): 1595-1611, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478152

RESUMEN

PREMISE: Celtis is the most species-rich genus of Cannabaceae, an economically important family. Celtis species have been described as wind-pollinated and andromonoecious. However, the andromonoecy of Celtis has been debated because there are reports of monoclinous flowers with non-opening anthers on short filaments. Our objective was to study the floral morphogenesis of Celtis to establish the breeding system and to better understand the developmental patterns that lead to the formation of reduced flowers in the genus. METHODS: Flowers and floral buds of Celtis species were studied using scanning electron microscopy, high-resolution x-ray computed tomography, and light microscopy. RESULTS: All flowers initiate stamens and carpels during early floral development, but either stamens or carpels abort during later stages. Thus, at anthesis, flowers are either functionally pistillate or functionally staminate. In pistillate flowers, stamens abort late and become staminodes with normal-looking anthers. These anthers have no functional endothecium and, in most of the species studied, produce no viable pollen grains. The gynoecium is pseudomonomerous, and its vascularization is similar in the sampled species. In staminate flowers, the gynoecium aborts early resulting in small pistillodes. No vestiges of petals were found. CONCLUSIONS: The species studied are monoecious and not andromonoecious as described earlier. The absence of petals, the carpel and stamen abortion, and the pseudomonomerous gynoecium result in the reduced flowers of Celtis species. The use of high-resolution x-ray computed tomography was essential for a more accurate interpretation of ovary vascularization, confirming the pseudomonomerous structure of the gynoecium.


Asunto(s)
Cannabaceae , Ulmaceae , Flores , Morfogénesis , Fitomejoramiento
15.
Front Mol Biosci ; 8: 683671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395523

RESUMEN

Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in Ardisia crenata (Primulaceae) and Psychotria punctata (Rubiaceae). The results indicate that abiotic stress resilience plays an important part within the leaf nodule symbiosis of both species. Both species showed metabolic signatures of enhanced nitrogen assimilation/dissimilation pattern and increased polyamine levels in nodules compared to leaf lamina tissue potentially involved in senescence processes and photosynthesis. Multiple links to cytokinin and REDOX-active pathways were found. Our results further demonstrate that secondary metabolite production by endophytes is a key feature of this symbiotic system. Multiple anhydromuropeptides (AhMP) and their derivatives were identified as highly characteristic biomarkers for nodulation within both species. A novel epicatechin derivative was structurally elucidated with NMR and shown to be enriched within the leaf nodules of A. crenata. This enrichment within nodulated tissues was also observed for catechin and other flavonoids indicating that flavonoid metabolism may play an important role for leaf nodule symbiosis of A. crenata. In contrast, pavettamine was only detected in P. punctata and showed no nodule specific enrichment but a developmental effect. Further natural products were detected, including three putative unknown depsipeptide structures in A. crenata leaf nodules. The analysis presents a first metabolomics reference data set for the intimate interaction of microbes and plants in leaf nodules, reveals novel metabolic processes of plant-microbe interaction as well as the potential of natural product discovery in these systems.

16.
New Phytol ; 232(2): 853-867, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309843

RESUMEN

Questions concerning the evolution of complex biological structures are central to the field of evolutionary biology. Yet, still little information is known about the modes and temporal dynamics of three-dimensional (3D) flower shape evolution across the history of clades. Here, we combined high-resolution X-ray computed tomography with 3D geometric morphometrics and phylogenetic comparative methods to test models of whole-flower shape evolution in the orchid family, using an early Late Miocene clade (c. 50 spp.) of Malagasy Bulbophyllum as model system. Based on landmark data of 38 species, our high-dimensional model fitting decisively rejects a purely neutral mode of evolution, suggesting instead that flower shapes evolved towards a primary adaptive optimum. Only a small number of recently evolved species/lineages attained alternative shape optima, resulting in an increased rate of phenotypic evolution. Our findings provide evidence of constrained 3D flower shape evolution in a small-sized clade of tropical orchids, resulting in low rates of phenotypic evolution and uncoupled trait-diversification rates. We hypothesise that this deep imprint of evolutionary constraint on highly complex floral structures might reflect long-term (directional and/or stabilizing) selection exerted by the group's main pollinators (flies).


Asunto(s)
Orchidaceae , Evolución Biológica , Flores , Orchidaceae/genética , Fenotipo , Filogenia
17.
Evolution ; 75(10): 2589-2599, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33963764

RESUMEN

Heteranthery, the presence of distinct stamen types within a flower, is commonly explained as functional adaptation to alleviate the "pollen dilemma," defined as the dual and conflicting function of pollen as pollinator food resource and male reproductive agent. A single primary hypothesis, "division of labor," has been central in studies on heteranthery. This hypothesis postulates that one stamen type functions in rewarding pollen-collecting pollinators and the other in reproduction, thereby minimizing pollen loss. Only recently, alternative functions (i.e., staggered pollen release), were proposed, but comparative and experimental investigations are lagging behind. Here, we used 63 species of the tribe Merianieae (Melastomataceae) to demonstrate that, against theory, heteranthery occurs in flowers offering rewards other than pollen, such as staminal food bodies or nectar. Although shifts in reward type released species from the "pollen dilemma," heteranthery has evolved repeatedly de novo in food-body-rewarding, passerine-pollinated flowers. We used field investigations to show that foraging passerines discriminated between stamen types and removed large stamens more quickly than small stamens. Passerines removed small stamens on separate visits towards the end of flower anthesis. We propose that the staggered increase in nutritive content of small stamens functions to increase chances for outcross-pollen transfer.


Asunto(s)
Polinización , Caracteres Sexuales , Flores , Polen , Reproducción
18.
New Phytol ; 231(2): 864-877, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864287

RESUMEN

Evolutionary shifts from bee to vertebrate pollination are common in tropical mountains. Reduction in bee pollination efficiency under adverse montane weather conditions was proposed to drive these shifts. Although pollinator shifts are central to the evolution and diversification of angiosperms, we lack experimental evidence of the ecological processes underlying such shifts. Here, we combine phylogenetic and distributional data for 138 species of the Neotropical plant tribe Merianieae (Melastomataceae) with pollinator observations of 11 and field pollination experiments of six species to test whether the mountain environment may indeed drive such shifts. We demonstrate that shifts from bee to vertebrate pollination coincided with occurrence at high elevations. We show that vertebrates were highly efficient pollinators even under the harsh environmental conditions of tropical mountains, whereas bee pollination efficiency was lowered significantly through reductions in flower visitation rates. Furthermore, we show that pollinator shifts in Merianieae coincided with the final phases of the Andean uplift and were contingent on adaptive floral trait changes to alternative rewards and mechanisms facilitating pollen dispersal. Our results provide evidence that abiotic environmental conditions (i.e. mountain climate) may indeed reduce the efficiency of a plant clade's ancestral pollinator group and correlate with shifts to more efficient new pollinators.


Asunto(s)
Flores , Polinización , Animales , Abejas , Filogenia , Polen , Vertebrados
19.
New Phytol ; 230(2): 821-831, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33454991

RESUMEN

Morphological diversity (disparity) is an essential but often neglected aspect of biodiversity. Hence, it seems timely and promising to re-emphasize morphology in modern evolutionary studies. Disparity is a good proxy for the diversity of functions and interactions with the environment of a group of taxa. In addition, geographical and ecological patterns of disparity are crucial to understand organismal evolution and to guide biodiversity conservation efforts. Here, we analyse floral disparity across latitudinal intervals, growth forms, climate types, types of habitats, and regions for a large and representative sample of the angiosperm order Ericales. We find a latitudinal gradient of floral disparity and a decoupling of disparity from species richness. Other factors investigated are intercorrelated, and we find the highest disparity for tropical trees growing in African and South American forests. Explanations for the latitudinal gradient of floral disparity may involve the release of abiotic constraints and the increase of biotic interactions towards tropical latitudes, allowing tropical lineages to explore a broader area of the floral morphospace. Our study confirms the relevance of biodiversity parameters other than species richness and is consistent with the importance of species interactions in the tropics, in particular with respect to angiosperm flowers and their pollinators.


Asunto(s)
Ericales , Magnoliopsida , Biodiversidad , Flores , Filogenia , Clima Tropical
20.
Am J Bot ; 107(10): 1433-1448, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33026116

RESUMEN

PREMISE: Significant paleobotanical discoveries in recent decades have considerably improved our understanding of the early evolution of angiosperms and their flowers. However, our ability to test the systematic placement of fossil flowers on the basis of phylogenetic analyses has remained limited, mainly due to the lack of an adequate, angiosperm-wide morphological data set for extant taxa. Earlier attempts to place fossil flowers phylogenetically were, therefore, forced to make prior qualitative assessments of the potential systematic position of fossils and to restrict phylogenetic analyses to selected angiosperm subgroups. METHODS: We conduct angiosperm-wide molecular backbone analyses of 10 fossil flower taxa selected from the Cretaceous record. Our analyses make use of a floral trait data set built within the framework of the eFLOWER initiative. We provide an updated version of this data set containing data for 28 floral and two pollen traits for 792 extant species representing 372 angiosperm families. RESULTS: We find that some fossils are placed congruently with earlier hypotheses while others are found in positions that had not been suggested previously. A few take up equivocal positions, including the stem branches of large clades. CONCLUSIONS: Our study provides an objective approach to test for the phylogenetic position of fossil flowers across angiosperms. Such analyses may provide a complementary tool for paleobotanical studies, allowing for a more comprehensive understanding of fossil phylogenetic relationships in angiosperms. Ongoing work focused on extending the sampling of extant taxa and the number of floral traits will further improve the applicability and accuracy of our approach.


Asunto(s)
Fósiles , Magnoliopsida , Evolución Biológica , Flores , Magnoliopsida/genética , Filogenia , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...