Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 48(2): 395-405, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32621132

RESUMEN

PURPOSE: Cancer has a multitude of phenotypic expressions and identifying these are important for correct diagnosis and treatment selection. Clinical molecular imaging such as positron emission tomography can access several of these hallmarks of cancer non-invasively. Recently, hyperpolarized magnetic resonance spectroscopy with [1-13C] pyruvate has shown great potential to probe metabolic pathways. Here, we investigate simultaneous dual modality clinical molecular imaging of angiogenesis and deregulated energy metabolism in canine cancer patients. METHODS: Canine cancer patients (n = 11) underwent simultaneous [68Ga]Ga-NODAGA-E[(cRGDyK)]2 (RGD) PET and hyperpolarized [1-13C]pyruvate-MRSI (hyperPET). Standardized uptake values and [1-13C]lactate to total 13C ratio were quantified and compared generally and voxel-wise. RESULTS: Ten out of 11 patients showed clear tumor uptake of [68Ga]Ga-NODAGA-RGD at both 20 and 60 min after injection, with an average SUVmean of 1.36 ± 0.23 g/mL and 1.13 ± 0.21 g/mL, respectively. A similar pattern was seen for SUVmax values, which were 2.74 ± 0.41 g/mL and 2.37 ± 0.45 g/mL. The [1-13C]lactate generation followed patterns previously reported. We found no obvious pattern or consistent correlation between the two modalities. Voxel-wise tumor values of RGD uptake and lactate generation analysis revealed a tendency for each canine cancer patient to cluster in separated groups. CONCLUSION: We demonstrated combined imaging of [68Ga]Ga-NODAGA-RGD-PET for angiogenesis and hyperpolarized [1-13C]pyruvate-MRSI for probing energy metabolism. The results suggest that [68Ga]Ga-NODAGA-RGD-PET and [1-13C]pyruvate-MRSI may provide complementary information, indicating that hyperPET imaging of angiogenesis and energy metabolism is able to aid in cancer phenotyping, leading to improved therapy planning.


Asunto(s)
Neoplasias , Ácido Pirúvico , Acetatos , Animales , Perros , Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo , Humanos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones
2.
Tomography ; 4(3): 110-122, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30320211

RESUMEN

Here, we developed a symmetric echo-planar spectroscopic imaging (EPSI) sequence for hyperpolarized 13C imaging on a clinical hybrid positron emission tomography/magnetic resonance imaging system. The pulse sequence uses parallel reconstruction pipelines to separately reconstruct data from odd-and-even gradient echoes to reduce artifacts from gradient imbalances. The ramp-sampled data in the spatiotemporal frequency space are regridded to compensate for the chemical-shift displacements. Unaliasing of nonoverlapping peaks outside of the sampled spectral width was performed to double the effective spectral width. The sequence was compared with conventional phase-encoded chemical-shift imaging (CSI) in phantoms, and it was evaluated in a canine cancer patient with ameloblastoma after injection of hyperpolarized [1-13C]pyruvate. The relative signal-to-noise ratio of EPSI with respect to CSI was 0.88, which is consistent with the decrease in sampling efficiency due to ramp sampling. Data regridding in the spatiotemporal frequency space significantly reduced spatial blurring compared with direct fast Fourier transform. EPSI captured the spatial distributions of both metabolites and their temporal dynamics in vivo with an in-plane spatial resolution of 5 × 9 mm2 and a temporal resolution of 3 seconds. Significantly higher spatial and temporal resolution for delineating anatomical structures in vivo was achieved for EPSI metabolic maps than for CSI maps, which suffered spatiotemporal blurring. The EPSI sequence showed promising results in terms of short acquisition time and sufficient spectral bandwidth of 500 Hz, allowing to adjust the trade-off between signal-to-noise ratio and encoding speed.

3.
Eur J Radiol ; 103: 6-12, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29803387

RESUMEN

13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare hyperpolarized [1-13C]pyruvate MRS with simultaneous 18F-2-fluoro-2-deoxy-d-glucose (FDG) PET in a cross-sectional study of canine cancer patients. METHODS: Canine cancer patients underwent integrated PET/MRI using a clinical whole-body system. Hyperpolarized [1-13C]pyruvate was obtained using dissolution-DNP. 18F-FDG PET, dynamic 13C MRS, 13C MRS Imaging (MRSI) and anatomical 1H MRI was acquired from 17 patients. Apparent pyruvate-to-lactate rate constants were estimated from dynamic 13C MRS. 18F-FDG Standard Uptake Values and maximum [1-13C]lactate-to-total-13C ratios were obtained from tumor regions of interest. Following inspection of data, patients were grouped according to main cancer type and linear regression between measures of lactate generation and 18F-FDG uptake were tested within groups. Between groups, the same measures were tested for group differences. RESULTS: The main cancer types of the 17 patients were sarcoma (n = 11), carcinoma (n = 5) and mastocytoma (n = 1). Significant correlations between pyruvate-to-lactate rate constants and 18F-FDG uptake were found for sarcoma patients, whereas no significant correlations appeared for carcinoma patients. The sarcoma patients showed a non-significant trend towards lower 18F-FDG uptake and higher lactate generation than carcinoma patients. However, the ratio of lactate generation to 18F-FDG uptake was found to be significantly higher in sarcoma as compared to carcinoma. The results were found both when lactate generation was estimated as an apparent pyruvate-to-lactate rate constant from dynamic 13C MRS and as an [1-13C]lactate to total 13C ratio from 13C MRSI. CONCLUSIONS: A comparison of hyperpolarized [1-13C]pyruvate MRS with simultaneous 18F-FDG PET indicate that lactate generation and 18F-FDG uptake in cancers can be related and that their relation depend on cancer type. This finding could be important for the interpretation and eventual clinical implementation of hyperpolarized 13C. In addition, the differences between the two modalities may allow for better metabolic phenotyping performing hybrid imaging in the form of hyperPET.


Asunto(s)
Isótopos de Carbono , Fluorodesoxiglucosa F18 , Glucólisis/fisiología , Espectroscopía de Resonancia Magnética/métodos , Neoplasias/fisiopatología , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Animales , Estudios Transversales , Modelos Animales de Enfermedad , Perros , Femenino , Humanos , Masculino , Ácido Pirúvico , Radiofármacos
4.
Diabetes Technol Ther ; 8(5): 546-59, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17037969

RESUMEN

BACKGROUND: Continuous glucose measurements provide improved glycemic control and may prevent hypoglycemia and long-term complications of diabetes. One of the most promising techniques is the short-term implantation of electrochemical glucose sensors in subcutis. However, the inflammatory reaction to these sensors may lead to bioinstability of sensor measurements. The purpose of the present investigation was to examine factors contributing to the observed subcutaneous inflammatory reaction to an enzyme-based electrochemical glucose sensor for continuous glucose measurements. The sensor biocompatibility was assessed in vitro and in vivo. METHODS: A toxicological assessment was performed on sensor materials and leachables, and the endotoxin content of sensors was determined by a Limulus amoebocyte lysate (LAL) test. Moreover, as a consequence of permanent penetration of the skin by the sensor the role of bacterial migration to the tissue was investigated. In vivo biocompatibility was investigated through histological examination of implanted sensor membranes for 3 days in pigs. Additionally, the effect of needle size and type (normal vs. inserter needle) on tissue trauma at sensor insertion was evaluated, and the healing of subcutis was assessed histologically from 3 to 14 days after removal of sensors. RESULTS: The toxicological assessment and the LAL test showed no concerns in a 3-day implantation scenario, and bacterial migration to the subcutis could not be detected. The histological examination showed that a reduction in needle size reduced the extent of inflammation to very low levels, and that the different sensor membranes showed similar extent and type of inflammation. Additionally, the extent of subcutaneous tissue reaction after removal of sensors declined gradually over time and returned to near-normal levels after 2 weeks. CONCLUSION: The electrochemical enzyme-based glucose sensor for continuous glucose measurements in subcutis is acceptable from a biocompatibility point of view. Reducing the inserter needle in size reduces the trauma induced at sensor implantation to neglible levels. Furthermore, the tissue reaction to the sensor returns to near-normal 2 weeks after the sensor has been removed following a 3-day implantation period.


Asunto(s)
Técnicas Biosensibles/instrumentación , Glucemia/análisis , Electrodos Implantados/efectos adversos , Monitoreo Ambulatorio/instrumentación , Animales , Electroquímica , Electrodos Implantados/microbiología , Endotoxinas/análisis , Femenino , Reacción a Cuerpo Extraño/patología , Glucosa Oxidasa , Cangrejos Herradura , Ensayo de Materiales , Tejido Subcutáneo/patología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...