Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(16): OFS1, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706914

RESUMEN

This special issue contains a collection of papers on optical fiber sensors that were originally presented and published in a more succinct form in conjunction with the 27th International Conference on Optical Fiber Sensors (OFS) held in Alexandria, Virginia, United States, from 29th August to 2nd September, 2022.

2.
Sci Adv ; 9(26): eadg7841, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390201

RESUMEN

The laser is one of the greatest inventions in history. Because of its ubiquitous applications and profound societal impact, the concept of the laser has been extended to other physical domains including phonon lasers and atom lasers. Quite often, a laser in one physical domain is pumped by energy in another. However, all lasers demonstrated so far have only lased in one physical domain. We have experimentally demonstrated simultaneous photon and phonon lasing in a two-mode silica fiber ring cavity via forward intermodal stimulated Brillouin scattering (SBS) mediated by long-lived flexural acoustic waves. This two-domain laser may find potential applications in optical/acoustic tweezers, optomechanical sensing, microwave generation, and quantum information processing. Furthermore, we believe that this demonstration will usher in other multidomain lasers and related applications.


Asunto(s)
Fonones , Fotones , Rayos Láser , Pinzas Ópticas , Sonido
3.
Light Sci Appl ; 12(1): 125, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221183

RESUMEN

Recent years have witnessed the tremendous development of fusing fiber-optic imaging with supervised deep learning to enable high-quality imaging of hard-to-reach areas. Nevertheless, the supervised deep learning method imposes strict constraints on fiber-optic imaging systems, where the input objects and the fiber outputs have to be collected in pairs. To unleash the full potential of fiber-optic imaging, unsupervised image reconstruction is in demand. Unfortunately, neither optical fiber bundles nor multimode fibers can achieve a point-to-point transmission of the object with a high sampling density, as is a prerequisite for unsupervised image reconstruction. The recently proposed disordered fibers offer a new solution based on the transverse Anderson localization. Here, we demonstrate unsupervised full-color imaging with a cellular resolution through a meter-long disordered fiber in both transmission and reflection modes. The unsupervised image reconstruction consists of two stages. In the first stage, we perform a pixel-wise standardization on the fiber outputs using the statistics of the objects. In the second stage, we recover the fine details of the reconstructions through a generative adversarial network. Unsupervised image reconstruction does not need paired images, enabling a much more flexible calibration under various conditions. Our new solution achieves full-color high-fidelity cell imaging within a working distance of at least 4 mm by only collecting the fiber outputs after an initial calibration. High imaging robustness is also demonstrated when the disordered fiber is bent with a central angle of 60°. Moreover, the cross-domain generality on unseen objects is shown to be enhanced with a diversified object set.

4.
Opt Express ; 31(9): 14343-14357, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157300

RESUMEN

Imaging through scattering media is a useful and yet demanding task since it involves solving for an inverse mapping from speckle images to object images. It becomes even more challenging when the scattering medium undergoes dynamic changes. Various approaches have been proposed in recent years. However, none of them are able to preserve high image quality without either assuming a finite number of sources for dynamic changes, assuming a thin scattering medium, or requiring access to both ends of the medium. In this paper, we propose an adaptive inverse mapping (AIP) method, which requires no prior knowledge of the dynamic change and only needs output speckle images after initialization. We show that the inverse mapping can be corrected through unsupervised learning if the output speckle images are followed closely. We test the AIP method on two numerical simulations: a dynamic scattering system formulated as an evolving transmission matrix and a telescope with a changing random phase mask at a defocused plane. Then we experimentally apply the AIP method to a multimode-fiber-based imaging system with a changing fiber configuration. Increased robustness in imaging is observed in all three cases. AIP method's high imaging performance demonstrates great potential in imaging through dynamic scattering media.

5.
Opt Lett ; 46(16): 3933-3936, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388778

RESUMEN

A novel temperature-insensitive optical curvature sensor has been proposed and demonstrated. The sensor is fabricated by inscribing fiber Bragg gratings with short lengths into a piece of strongly coupled multicore fiber (SCMCF) and spliced to the conventional single-mode fiber. Due to the two supermodes being supported by the SCMCF, two resonance peaks, along with a deep notch between them, were observed in the reflection spectrum. The experimental results show that the depth of the notch changes with the curvature with a sensitivity up to 15.9dB/m-1 in a lower curvature range. Besides, thanks to the unique property of the proposed sensor, the notch depth barely changes with temperature. Based on the intensity demodulation of the notch depth, the temperature-insensitive curvature sensor is achieved with the cross sensitivity between the temperature, and the curvature is as low as 0.001m-1/∘C.

6.
Opt Lett ; 46(9): 2224-2227, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929460

RESUMEN

In this Letter, a long-range optical fiber displacement sensor based on an extrinsic Fabry-Perot interferometer (EFPI) built with a strongly coupled multicore fiber (SCMCF) is proposed and demonstrated. To fabricate the device, 9.2 mm of SCMCF was spliced to a conventional single-mode fiber (SMF). The sensor reflection spectrum is affected by super-mode interference in the SCMCF and the interference produced by the EFPI. Displacement of the SMF-SCMCF tip with respect to a reflecting surface produces quantifiable changes in the amplitude and period of the interference pattern in the reflection spectrum. Since the multicore fiber is an efficient light collecting area, sufficient signal intensity can be obtained for displacements of several centimeters. By analyzing the interference pattern in the Fourier domain, it was possible to measure displacements up to 50 mm with a resolution of approximately 500 nm. To our knowledge, this is the first time that a multicore fiber has been used to build a displacement sensor. The dynamic measurement range is at least seven times larger than that achieved with an EFPI built with a conventional SMF. Moreover, the SMF-SCMCF tip is robust and easy to fabricate and replicate.

7.
Sci Rep ; 11(1): 5989, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727681

RESUMEN

We propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).

9.
Sci Rep ; 10(1): 16180, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999364

RESUMEN

We report on a compact, highly sensitive all-fiber accelerometer suitable for low frequency and low amplitude vibration sensing. The sensing elements in the device are two short segments of strongly coupled asymmetric multicore fiber (MCF) fusion spliced at 180° with respect to each other. Such segments of MCF are sandwiched between standard single mode fibers. The reflection spectrum of the device exhibits a narrow spectrum whose height and position in wavelength changes when it is subjected to vibrations. The interrogation of the accelerometer was carried out by a spectrometer and a photodetector to measure simultaneously wavelength shift and light power variations. The device was subjected to a wide range of vibration frequencies, from 1 mHz to 30 Hz, and accelerations from 0.76 mg to 29.64 mg, and performed linearly, with a sensitivity of 2.213 nW/mg. Therefore, we believe the accelerometer reported here may represent an alternative to existing electronic and optical accelerometers, especially for low frequency and amplitude vibrations, thanks to its compactness, simplicity, cost-effectiveness, implementation easiness and high sensitivity.

10.
Sci Rep ; 10(1): 14058, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820232

RESUMEN

Fibre optic technology is rapidly evolving, driven mainly by telecommunication and sensing applications. Excellent reliability of the manufacturing processes and low cost have drawn ever increasing attention to fibre-based sensors, e.g. for studying mechanical response/limitations of aerospace composite structures. Here, a vector bending and orientation distinguishing curvature sensor, based on asymmetric coupled multi-core fibre, is proposed and experimentally demonstrated. By optimising the mode coupling effect of a seven core multi-core fibre, we have achieved a sensitivity of - 1.4 nm/° as a vector bending sensor and - 17.5 nm/m-1 as a curvature sensor. These are the highest sensitivities reported so far, to the best of our knowledge. In addition, our sensor offers several advantages such as repeatability of fabrication, wide operating range and small size and weight which benefit its sensing applications.

11.
Opt Lett ; 45(8): 2323-2326, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287224

RESUMEN

Mode-selective fiber lasers have advantages in a number of applications. Here we propose and experimentally demonstrate a transverse mode-selective few-mode Brillouin fiber laser using the mode-selective photonic lantern. We generated the lowest three orders of linearly polarized (LP) modes based on both intramodal and intermodal stimulated Brillouin scattering (SBS). Their slope efficiencies, optical spectra, mode profiles, and linewidths were measured.

12.
Appl Opt ; 58(13): D50-D60, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044820

RESUMEN

In this paper, we review recent progress in disordered optical fiber featuring transverse Anderson localization and its applications for imaging. Anderson localizing optical fiber has a transversely random but longitudinally uniform refractive index profile. The strong scattering from the transversely disordered refractive index profiles generates thousands of guiding modes that are spatially isolated and mainly demonstrate single-mode properties. By making use of these beam transmission channels, robust and high-fidelity imaging transport can be realized. The first disordered optical fiber of this type, the polymer Anderson localizing optical fiber, has been utilized to demonstrate better imaging performance than some of the commercial multicore fibers within a few centimeters transmission distance. To obtain longer transmission lengths and better imaging qualities, glass-air disordered optical fibers are desirable due to their lower loss and larger refractive index contrast. Recently developed high air-filling fraction glass-air disordered fiber can provide bending-independent and high-quality image transport through a meter-long transmission distance. By integrating a deep-learning algorithm with glass-air disordered fiber, a fully flexible, artifact-free, and lensless fiber imaging system is demonstrated, with potential benefits for biomedical and clinical applications. Future research will focus on optimizing structural parameters of disordered optical fiber as well as developing more efficient deep-learning algorithms to further improve the imaging performance.

13.
Appl Opt ; 58(13): D61-D67, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044821

RESUMEN

The paper presents an overview of the benefits of recording phase masks into the bulk of photo-thermo-refractive glass. We demonstrate that both binary and gray-scale phase masks can be encoded into the medium, and that such masks can be used for mode conversion and beam shaping with near-theoretical efficiency. We further demonstrate that by encoding the phase mask profile into a transmitting volume Bragg grating, it is possible to create tunable and achromatic phase masks without requiring a complex phase pattern.

14.
Appl Opt ; 58(13): UCF1, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044847

RESUMEN

This feature issue highlights some current applied optics and photonics related research activities taking place at CREOL, The College of Optics & Photonics at the University of Central Florida. The issue includes contributions from various CREOL research groups, showing diversity and particular focus areas at our Center for Excellence in Optics.

15.
Sci Rep ; 9(1): 4446, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872762

RESUMEN

Supercontinuum (SC) generation based on ultrashort pulse compression constitutes one of the most promising technologies towards ultra-wide bandwidth, high-brightness, and spatially coherent light sources for applications such as spectroscopy and microscopy. Here, multi-octave SC generation in a gas-filled hollow-core antiresonant fiber (HC-ARF) is reported spanning from 200 nm in the deep ultraviolet (DUV) to 4000 nm in the mid-infrared (mid-IR) having an output energy of 5 µJ. This was obtained by pumping at the center wavelength of the first anti-resonant transmission window (2460 nm) with ~100 fs pulses and an injected pulse energy of ~8 µJ. The mechanism behind the extreme spectral broadening relies upon intense soliton-plasma nonlinear dynamics which leads to efficient soliton self-compression and phase-matched dispersive wave (DW) emission in the DUV region. The strongest DW is observed at 275 nm which corresponds to the calculated phase-matching wavelength of the pump. Furthermore, the effect of changing the pump pulse energy and gas pressure on the nonlinear dynamics and their direct impact on SC generation was investigated. This work represents another step towards gas-filled fiber-based coherent sources, which is set to have a major impact on applications spanning from DUV to mid-IR.

16.
Opt Express ; 27(4): 3824-3836, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876007

RESUMEN

In this paper, we numerically investigate various hollow-core anti-resonant (HC-AR) fibers towards low propagation and bend loss with effectively single-mode operation in the telecommunications window. We demonstrate how the propagation loss and higher-order mode modal contents are strongly influenced by the geometrical structure and the number of the anti-resonant cladding tubes. We found that 5-tube nested HC-AR fiber has a wider anti-resonant band, lower loss, and larger higher-order mode extinction ratio than designs with 6 or more anti-resonant tubes. A loss ratio between the higher-order modes and fundamental mode, as high as 12,000, is obtained in a 5-tube nested HC-AR fiber. To the best of our knowledge, this is the largest higher-order mode extinction ratio demonstrated in a hollow-core fiber at 1.55 µm. In addition, we propose a modified 5-tube nested HC-AR fiber, with propagation loss below 1 dB/km from 1330 to 1660 nm. This fiber also has a small bend loss of ~15 dB/km for a bend radius of 1 cm.

17.
Light Sci Appl ; 7: 94, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510690

RESUMEN

The development of high-power, broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications in medical diagnostics, spectroscopy, microscopy, and fundamental science. One of the major, long-standing challenges in improving the performance of these applications has been the construction of compact, broadband mid-infrared radiation sources, which unify the properties of high brightness and spatial and temporal coherence. Due to the lack of such radiation sources, several emerging applications can be addressed only with infrared (IR)-beamlines in large-scale synchrotron facilities, which are limited regarding user access and only partially fulfill these properties. Here, we present a table-top, broadband, coherent mid-infrared light source that provides brightness at an unprecedented level that supersedes that of synchrotrons in the wavelength range between 3.7 and 18 µm by several orders of magnitude. This result is enabled by a high-power, few-cycle Tm-doped fiber laser system, which is employed as a pump at 1.9 µm wavelength for intrapulse difference frequency generation (IPDFG). IPDFG intrinsically ensures the formation of carrier-envelope-phase stable pulses, which provide ideal prerequisites for state-of-the-art spectroscopy and microscopy.

18.
Sci Rep ; 8(1): 3065, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449605

RESUMEN

We present a randomly disordered silica-air optical fiber featuring a 28.5% air filling fraction in the structured region, and low attenuation below 1 dB per meter at visible wavelengths. The quality of images transported through this fiber is shown to be comparable to, or even better than, that of images sent through commercial multicore imaging fiber. We demonstrate robust high-quality optical image transfer through 90 cm-long fibers with disordered silica-air structure, more than an order of magnitude improvement compared to previous disordered fiber imaging distances. The effects of variations of wavelength and feature size on transported image quality are investigated experimentally.

19.
Opt Lett ; 43(3): 423-426, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400805

RESUMEN

An all-fiber amplifier for a single-frequency blue laser was demonstrated for the first time, to the best of our knowledge. Over 150 mW continuous-wave single-transverse-mode blue laser output was obtained with a 10 m 1000 ppm thulium-doped fluoride fiber pumped by a 1125 nm fiber laser at a power of 2 W. The output power was limited due to the onset of the competitive lasing at 783 nm. Photodarkening and photo-curing of the thulium-doped fiber amplifier were also studied and analyzed.

20.
Opt Express ; 26(25): 32777-32787, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645440

RESUMEN

We propose and experimentally demonstrate an intra-cavity transverse mode-switchable fiber laser based on a mode-selective photonic lantern and a few-mode Er-doped fiber amplifier. The six lowest-order LP modes can lase independently and are switchable by changing the input port of the photonic lantern. We measured the slope efficiency, mode intensity profile, and optical spectrum of each lasing mode. In addition, we demonstrate donut-shaped LP11 and LP21 modes using incoherent superposition and simultaneous lasing of the two degenerate modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...