Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37054711

RESUMEN

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Asunto(s)
Proteínas de Drosophila , Enfermedades del Sistema Nervioso , Adulto , Animales , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación/genética , ARN Mensajero
3.
J Pers Med ; 12(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35743672

RESUMEN

Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders and occurs in all racial, ethnic, and socioeconomic groups. Cutting-edge technologies are contributing to understanding genetic underpinnings in ASD. The reported patient is a 32-year-old male and as an infant was noted to have microcephaly, hypospadias, pulmonary vascular anomaly, and small stature. He was diagnosed with Cornelia De Lange Syndrome (CDLS) at that time based on the clinical features. As a child, he had autistic features and intellectual disabilities and as diagnoses with autism and intellectual disability. He was referred as an adult to our neurodiversity clinic and a full exome trio sequencing with reflex to mitochondrial genes identified a de novo variant of uncertain significance in a candidate gene, DCAF1. The specific variant was c.137 C > T (p.Thr46Ile) in exon 4 in the DCAF1 gene. In silico analysis supports a deleterious effect on protein structure/function. DCAF1 participates with DDB1 and CUL4 as a part of the E3 ubiquitin ligase complex. The E3 ligase complex has been associated with a syndromic form of X-linked intellectual disability. The DDB1/CUL4 E3 ubiquitination complex plays a role in methylation-dependent ubiquitination. Next, a methylation study identified a signature similar to the methylation pattern found in X- linked intellectual disability type 93. This is associated with variants of the BRWD3 gene, which is linked with the functioning of the DDB1/CUL4 E3 ubiquitination complex. Taken together, this suggests that the de novo DCAF1 variant may be a newly identified molecular cause of autism and intellectual disability.

4.
J Pers Med ; 12(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455715

RESUMEN

Neurodevelopmental disorders have steadily increased in incidence in the United States. Over the past decade, there have been significant changes in clinical diagnoses and treatments some of which are due to the increasing adoption of pharmacogenomics (PGx) by clinicians. In this pilot study, a multidisciplinary team at the Arkansas Children's Hospital North West consulted on 27 patients referred for difficult-to-manage neurodevelopmental and/or neurobehavioral disorders. The 27 patients were evaluated by the team using records review, team discussion, and pharmacogenetic testing. OneOme RightMed® (Minneapolis, MN, USA) and the Arkansas Children's Hospital comprehensive PGx test were used for drug prescribing guidance. Of the 27 patients' predicted phenotypes, the normal metabolizer was 11 (40.8%) for CYP2C19 and 16 (59.3%) for CYP2D6. For the neurodevelopmental disorders, the most common comorbid conditions included attention-deficit hyperactivity disorder (66.7%), anxiety disorder (59.3%), and autism (40.7%). Following the team assessment and PGx testing, 66.7% of the patients had actionable medication recommendations. This included continuing current therapy, suggesting an appropriate alternative medication, starting a new therapy, or adding adjunct therapy (based on their current medication use). Moreover, 25.9% of patients phenoconverted to a CYP2D6 poor metabolizer. This retrospective chart review pilot study highlights the value of a multidisciplinary treatment approach to deliver precision healthcare by improving physician clinical decisions and potentially impacting patient outcomes. It also shows the feasibility to implement PGx testing in neurodevelopmental/neurobehavioral disorders.

5.
Hum Genet ; 141(3-4): 853-863, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34424407

RESUMEN

Pathogenic variations in the OTOF gene are a common cause of hearing loss. To refine the natural history and genotype-phenotype correlations of OTOF-related auditory neuropathy spectrum disorders (ANSD), audiograms and distortion product otoacoustic emissions (DPOAEs) were collected from a diverse cohort of individuals diagnosed with OTOF-related ANSD by comprehensive genetic testing and also reported in the literature. Comparative analysis was undertaken to define genotype-phenotype relationships using a Monte Carlo algorithm. 67 audiograms and 25 DPOAEs from 49 unique individuals positive for OTOF-related ANSD were collected. 51 unique OTOF pathogenic variants were identified of which 21 were missense and 30 were loss of function (LoF; nonsense, splice-site, copy number variants, and indels). There was a statistically significant difference in low, middle, and high frequency hearing thresholds between missense/missense and LoF/missense genotypes as compared to LoF/LoF genotypes (average hearing threshold for low, middle and high frequencies 70.9, 76.0, and 73.4 dB vs 88.5, 95.6, and 94.7 dB) via Tukey's test with age as a co-variate (P = 0.0180, 0.0327, and 0.0347, respectively). Hearing declined during adolescence with missense/missense and LoF/missense genotypes, with an annual mid-frequency threshold deterioration of 0.87 dB/year and 1.87 dB/year, respectively. 8.5% of frequencies measured via DPOAE were lost per year in individuals with serial tests. Audioprofiling of OTOF-related ANSD suggests significantly worse hearing with LoF/LoF genotypes. The unique pattern of variably progressive OTOF-related autosomal recessive ANSD may be amenable to gene therapy in selected clinical scenarios.


Asunto(s)
Sordera , Pérdida Auditiva Central , Pérdida Auditiva Central/diagnóstico , Pérdida Auditiva Central/genética , Humanos , Proteínas de la Membrana/genética , Mutación
6.
Front Pharmacol ; 12: 748415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867351

RESUMEN

Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.

7.
NPJ Genom Med ; 6(1): 104, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876591

RESUMEN

The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.

9.
NPJ Genom Med ; 6(1): 92, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750377

RESUMEN

TET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants. Validation and testing of the episignature correctly categorized known TET3 variants and determined pathogenicity of variants of uncertain significance. Clinical utility was demonstrated when the episignature alone identified an affected individual from over 1000 undiagnosed cases and was confirmed upon distinguishing TET3-deficient individuals from those with 46 other disorders. The TET3-deficient signature - and the signature resulting from activating mutations in DNMT1 which normally opposes TET3 - are characterized by hypermethylation, which for BEFAHRS involves CpG sites that may be biologically relevant. This work expands the role of epi-phenotyping in molecular diagnosis and reveals genome-wide DNA methylation profiling as a quantitative, functional readout for characterization of this new biochemical category of disease.

10.
J Pers Med ; 11(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34575625

RESUMEN

Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.

11.
J Pers Med ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064668

RESUMEN

Pharmacogenomics (PGx) is a growing field within precision medicine. Testing can help predict adverse events and sub-therapeutic response risks of certain medications. To date, the US FDA lists over 280 drugs which provide biomarker-based dosing guidance for adults and children. At Arkansas Children's Hospital (ACH), a clinical PGx laboratory-based test was developed and implemented to provide guidance on 66 pediatric medications for genotype-guided dosing. This PGx test consists of 174 single nucleotide polymorphisms (SNPs) targeting 23 clinically actionable PGx genes or gene variants. Individual genotypes are processed to provide per-gene discrete results in star-allele and phenotype format. These results are then integrated into EPIC- EHR. Genomic indicators built into EPIC-EHR provide the source for clinical decision support (CDS) for clinicians, providing genotype-guided dosing.

12.
Genet Med ; 22(8): 1413-1417, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32366965

RESUMEN

PURPOSE: This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS: Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS: Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION: Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Epilepsia/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Fenotipo , Secuenciación del Exoma
13.
Ophthalmic Genet ; 41(3): 271-274, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32340498

RESUMEN

BACKGROUND: Clinical genetics has evolved significantly to become an efficient and effective means of diagnosing disease. Genetic treatments are now being developed which are showing promising results. However, ophthalmic patients are not utilizing genetic testing as part of their diagnostic workups. This paper explores the patient experience at the Ocular Genetics Clinic (OGC) at the University of Arkansas for Medical Sciences (UAMS) Jones Eye Institute and discusses reasons why patients continue to not pursue genetic testing. MATERIALS AND METHODS: We performed a retrospective chart review to understand the main reasons why patients were referred to the OGC between 2009 and 2018, with a detailed analysis of why patients did not pursue genetic testing. RESULTS: Patients mainly did not undergo testing due to the cost of testing. However, patient availability, patient interest, and diagnostic workup also drove a significant amount of this lack of testing. CONCLUSIONS: Ocular genetic testing is becoming an increasingly beneficial tool for diagnosing ocular disease. However, to date, patients do not utilize this service fully. At the OGC, there are several main drivers for this lack of testing, namely finances, interest/availability, and diagnostic workup. As more ocular genetics clinics are established, it will be imperative to address reasons for forgoing genetic testing and to develop strategies to encourage patients to pursue this testing.


Asunto(s)
Oftalmopatías/diagnóstico , Pruebas Genéticas/métodos , Oftalmopatías/genética , Humanos , Fenotipo , Estudios Retrospectivos
14.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31928709

RESUMEN

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Asunto(s)
Desmetilación del ADN , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Dioxigenasas/deficiencia , Adulto , Secuencia de Aminoácidos , Trastorno Autístico/genética , Trastorno Autístico/patología , Niño , Preescolar , Dioxigenasas/química , Dioxigenasas/genética , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Linaje , Conformación Proteica , Homología de Secuencia , Adulto Joven
15.
J Clin Invest ; 130(3): 1431-1445, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794431

RESUMEN

Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies.


Asunto(s)
Hipocampo/enzimología , Histona Acetiltransferasas/metabolismo , Discapacidad Intelectual/enzimología , Neocórtex/enzimología , Células-Madre Neurales/enzimología , Acetilación , Animales , Células HEK293 , Hipocampo/patología , Histona Acetiltransferasas/genética , Humanos , Discapacidad Intelectual/patología , Ratones , Ratones Noqueados , Neocórtex/patología , Células-Madre Neurales/patología , Nucleosomas/genética , Nucleosomas/metabolismo
16.
Am J Hum Genet ; 105(2): 283-301, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353023

RESUMEN

The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Hipotonía Muscular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Células HeLa , Heterocigoto , Humanos , Masculino , Hipotonía Muscular/enzimología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(9): 3662-3667, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808755

RESUMEN

Kaufman oculocerebrofacial syndrome (KOS) is a recessive neurodevelopmental disorder characterized by intellectual disability and lack of speech. KOS is caused by inactivating mutations in UBE3B, but the underlying biological mechanisms are completely unknown. We found that loss of Ube3b in mice resulted in growth retardation, decreased grip strength, and loss of vocalization. The brains of Ube3b-/- mice had hypoplasia of the corpus callosum, enlarged ventricles, and decreased thickness of the somatosensory cortex. Ube3b-/- cortical neurons had abnormal dendritic morphology and synapses. We identified 22 UBE3B interactors and found that branched-chain α-ketoacid dehydrogenase kinase (BCKDK) is an in vivo UBE3B substrate. Since BCKDK targets several metabolic pathways, we profiled plasma and cortical metabolomes from Ube3b-/- mice. Nucleotide metabolism and the tricarboxylic acid cycle were among the pathways perturbed. Substrate-induced mitochondrial respiration was reduced in skeletal muscle but not in liver of Ube3b-/- mice. To assess the relevance of these findings to humans, we identified three KOS patients who had compound heterozygous UBE3B mutations. We discovered changes in metabolites from similar pathways in plasma from these patients. Collectively, our results implicate a disease mechanism in KOS, suggest that it is a metabolic encephalomyopathy, and provide an entry to targeted therapies.


Asunto(s)
Anomalías del Ojo/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Deformidades Congénitas de las Extremidades/genética , Microcefalia/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Animales , Encéfalo/fisiopatología , Niño , Anomalías del Ojo/fisiopatología , Facies , Humanos , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Deformidades Congénitas de las Extremidades/fisiopatología , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Microcefalia/fisiopatología , Mutación , Fenotipo , Ubiquitina/genética
19.
Am J Hum Genet ; 103(5): 786-793, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343942

RESUMEN

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 unrelated individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Computer structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones. These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skeletal features.

20.
Eur J Hum Genet ; 26(11): 1623-1634, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29925855

RESUMEN

We explored the clinico-genetic basis of spinocerebellar ataxia 29 (SCA29) by determining the frequency, phenotype, and functional impact of ITPR1 missense variants associated with early-onset ataxia (EOA). Three hundred thirty one patients from a European EOA target cohort (n = 120), US-American EOA validation cohort (n = 72), and early-onset epileptic encephalopathy (EOEE) control cohort (n = 139) were screened for de novo ITPR1 variants. The target cohort was also screened for inherited ITPR1 variants. The variants' functional impact was determined by IP3-induced Ca2+ release in HEK293 cells. 3/120 patients (2.5%) from the target cohort and 4/72 patients (5.5%) from the validation cohort, but none from the EOEE control cohort, carried de novo ITPR1 variants. However, most ITPR1 variants (7/10 = 70%) in the target cohort were inherited from a healthy parent, with 3/6 patients carrying disease-causing variants in other genes. This suggests limited or no phenotypic impact of many ITPR1 missense variants, even if ultra-rare and well-conserved. While common bioinformatics tools did not discriminate de novo from other ITPR1 variants, functional characterization demonstrated reduced IP3-induced Ca2+ release for all de novo variants, including the recurrent c.805C>T (p.(R269W)) variant. In sum, these findings show that de novo ITPR1 missense variants are a recurrent cause of EOA (SCA29) across independent cohorts, acting via loss of IP3 channel function. Inherited ITPR1 variants are also enriched in EOA, but often without strong impact, albeit rare and well-conserved. Functional studies allow identifying ITPR1 variants with large impact, likely disease-causing. Such functional confirmation is warranted for inherited ITPR1 variants before making a SCA29 diagnosis.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Mutación con Pérdida de Función , Degeneraciones Espinocerebelosas/genética , Calcio/metabolismo , Niño , Femenino , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mutación Missense , Degeneraciones Espinocerebelosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...