Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 6191, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848442

RESUMEN

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.


Asunto(s)
Aprendizaje Profundo , Animales , Clima Tropical , Bosques , Biodiversidad , Árboles , Ecosistema , Conservación de los Recursos Naturales
3.
Int J Parasitol ; 49(3-4): 235-246, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30673588

RESUMEN

Prevalence responses to anthropic factors differ across hosts and parasite species. We here analyzed the spatiotemporal variation of avian haemosporidian prevalence in bird assemblages of the Mooswald forest (i.e., urban greenspace; Freiburg, Germany), in response to local environmental features (e.g., water sources, human presence (visited)/absence (unvisited)) and bird-level traits (e.g., body condition, age, sex) in 2 years. We used a nested PCR protocol (mitochondrial (mt)DNA cytochrome b (cyt b) gene) and microscopy to determine haemosporidian infections. Prevalence was analyzed using a general linear multi-model (glmulti) approach with Akaike information criterion corrected for small samples (AICc), with subsequent model inferences using a GLMM on the best selected model, considering bird species as a random factor. Analyses were conducted for the main understory bird species (Blackcap - Sylvia atricapilla, Chaffinch - Coereba flaveola, Great Tit - Parus major, Blue Tit - Cyanistes caeruleus, European Robin - Erithacus rubecula, Blackbird - Turdus merula, Song Thrush - Turdus philomelos). We further conducted spatial autocorrelation analyses for all haemosporidian infections, and classification and regression trees (CARTs) for focal species. We analyzed a total of 544 samples of seven bird species. In 2011 prevalence for Haemoproteus/Plasmodium was 25.8% and 11.7% for Leucocytozoon. In 2013 prevalence for Haemoproteus/Plasmodium was 26.5% and 35.5% for Leucocytozoon. Haemosporidian prevalence was significantly different between some focal species. There was a negative association between distance to the nearest water source and prevalence in the year 2011, and the opposite pattern for the year 2013. However, when analyzed for the six focal species separately, such a relationship could change from a negative to a positive one, or there could be no relationship at all. For Leucocytozoon there was higher prevalence in the section of the forest visited by humans. We did not find spatial autocorrelation for prevalence across the study site, but there were statistically significant local spatial clusters in the visited section. Although there were similar responses of prevalence to some factors, infection patterns were generally bird species-specific. Thus, prevalence is a labile epidemiological parameter, varying spatiotemporally in an idiosyncratic way.


Asunto(s)
Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Aves , Haemosporida/clasificación , Haemosporida/aislamiento & purificación , Infecciones por Protozoos/epidemiología , Infecciones por Protozoos/parasitología , Animales , Ciudades/epidemiología , Alemania/epidemiología , Prevalencia , Análisis Espacio-Temporal
4.
Nat Commun ; 9(1): 4838, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446651

RESUMEN

Theory assumes that fair trade among mutualists requires highly reliable communication. In plant-animal mutualisms the reliability of cues that indicate reward quality is often low. Therefore, it is controversial whether communication allows animal mutualists to regulate their reward intake. Here we show that even loose relationships between fruit brightness and nutritional rewards (r2 = 0.11-0.35) allow birds to regulate their nutrient intake across distinct European plant-frugivore networks. Resident, over-wintering generalist frugivores that interact with diverse plant species select bright, lipid-rich fruits, whereas migratory birds select dark, sugar- and antioxidant-rich fruits. Both nutritional strategies are consistent with previous physiological experiments suggesting that over-wintering generalists aim to maximize their energy intake, whereas migrants aim to enhance the build-up of body fat, their immune response and oxidative status during migration. Our results suggest that animal mutualists require only weak cues to regulate their reward intake according to specific nutritional strategies.


Asunto(s)
Aves/fisiología , Señales (Psicología) , Preferencias Alimentarias/fisiología , Frutas/química , Recompensa , Simbiosis/fisiología , Migración Animal/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/química , Aves/clasificación , Color , Frutas/anatomía & histología , Herbivoria/fisiología , Inmunidad Innata , Lípidos/química , Plantas/anatomía & histología , Plantas/química , Estaciones del Año
5.
PLoS One ; 13(1): e0191773, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29364949

RESUMEN

In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción , Periquitos , Altitud , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Ecuador , Especies en Peligro de Extinción/tendencias , Bosques , Modelos Biológicos , Clima Tropical
6.
Biol Rev Camb Philos Soc ; 92(1): 292-315, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26468059

RESUMEN

The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best-known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species-specific, more complex models giving accurate but context-dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log-linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists compare results between models and perform behavioural experiments more routinely. Such an approach would further contribute to a better understanding of colour vision and its links to the behavioural ecology of animals. While visual ecology is essentially a transfer of knowledge from visual sciences to evolutionary ecology, we hope that the discipline will benefit both fields more evenly in the future.


Asunto(s)
Percepción de Color/fisiología , Ecología , Modelos Biológicos , Animales , Evolución Biológica
7.
Oecologia ; 183(2): 597-606, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27873065

RESUMEN

Density-dependent processes are fundamental mechanisms for the regulation of populations. Ecological theories differ in their predictions on whether increasing population density leads to individual adjustments of survival and reproductive output or to dominance and monopolization of resources. Here, we use a natural experiment to examine which factors limit population growth in the only remaining population of the endangered pale-headed brush finch (Atlapetes pallidiceps). For three distinct phases (a phase of population suppression, 2001-2002; expansion due to conservation management, 2003-2008; and equilibrium phase, 2009-2014), we estimated demographic parameters with an integrated population model using population size, the proportion of successfully breeding pairs and their productivity, territory size, and mark-recapture data of adult birds. A low proportion of successful breeders due to brood parasitism (0.42, 95% credible interval 0.26-0.59) limited population growth before 2003; subsequent culling of the brood parasite resulted in a two-fold increase of the proportion of successful breeders during the 'expansion phase'. When the population approached the carrying capacity of its habitat, territory size declined by more than 50% and fecundity declined from 1.9 (1.54-2.27) to 1.3 (1.12-1.53) chicks per breeding pair, but the proportion of successful breeders remained constant (expansion phase: 0.85; 0.76-0.93; equilibrium phase: 0.86; 0.79-0.92). This study demonstrates that limiting resources can lead to individual adjustments instead of despotic behavior, and the individual reduction of reproductive output at high population densities is consistent with the slow life-history of many tropical species.


Asunto(s)
Conservación de los Recursos Naturales , Pájaros Cantores , Animales , Ecosistema , Fertilidad , Densidad de Población , Dinámica Poblacional
8.
PLoS One ; 11(12): e0169165, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28033364

RESUMEN

Tropical montane ecosystems are biodiversity hotspots harbouring many endemics that are confined to specific habitat types within narrow altitudinal ranges. While deforestation put these ecosystems under threat, we still lack knowledge about how heterogeneous environments like the montane tropics promote population connectivity and persistence. We investigated the fine-scale genetic structure of the two largest subpopulations of the endangered El Oro parakeet (Pyrrhura orcesi) endemic to the Ecuadorian Andes. Specifically, we assessed the genetic divergence between three sites separated by small geographic distances but characterized by a heterogeneous habitat structure. Although geographical distances between sites are small (3-17 km), we found genetic differentiation between all sites. Even though dispersal capacity is generally high in parrots, our findings indicate that dispersal is limited even on this small geographic scale. Individual genotype assignment revealed similar genetic divergence across a valley (~ 3 km distance) compared to a continuous mountain range (~ 13 km distance). Our findings suggest that geographic barriers promote genetic divergence even on small spatial scales in this endangered endemic species. These results may have important implications for many other threatened and endemic species, particularly given the upslope shift of species predicted from climate change.


Asunto(s)
Distribución Animal , Ecosistema , Variación Genética , Periquitos/genética , Periquitos/fisiología , Clima Tropical , Animales
9.
Nature ; 536(7617): 456-9, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533038

RESUMEN

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Animales , Biomasa , Alemania , Pradera , Herbivoria , Insectos , Microbiología , Modelos Biológicos , Plantas
10.
Curr Opin Plant Biol ; 32: 96-100, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27428780

RESUMEN

Colour change in flowers (with age and/or after pollination) is taxonomically widespread, has evolved repeatedly, and has a range of putative selective benefits linked to modifying pollinator behaviour; however, this phenomenon seems paradoxically uncommon. We explore this paradox by reviewing the empirical evidence and argue that the evolution and maintenance of floral colour change as a signal to modify pollinator behaviour require special ecological circumstances that will often not be met across a plant population for a sustained number of generations, which potentially explains the scarcity of this phenomenon. We discuss alternative explanations for floral colour change and potentially fruitful lines of future research.


Asunto(s)
Flores/fisiología , Polinización/fisiología , Animales , Evolución Biológica , Color , Plantas/metabolismo
11.
Int J Parasitol ; 46(9): 571-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27247106

RESUMEN

Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific.


Asunto(s)
Bosques , Haemosporida/fisiología , Passeriformes/inmunología , Passeriformes/parasitología , Árboles/inmunología , Árboles/parasitología , Animales , Biodiversidad , ADN , Ecosistema , Alemania/epidemiología , Haemosporida/inmunología , Interacciones Huésped-Parásitos , Passeriformes/sangre , Prevalencia , Infecciones Protozoarias en Animales/sangre , Infecciones Protozoarias en Animales/epidemiología , Infecciones Protozoarias en Animales/inmunología
12.
Artículo en Inglés | MEDLINE | ID: mdl-27114572

RESUMEN

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Asunto(s)
Biodiversidad , Pradera , Agricultura , Conservación de los Recursos Naturales , Alemania , Densidad de Población
13.
Proc Biol Sci ; 283(1823)2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26817779

RESUMEN

Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology.


Asunto(s)
Aves/anatomía & histología , Aves/fisiología , Conducta Alimentaria/fisiología , Frutas , Plantas/clasificación , Animales , Especificidad de la Especie
14.
PLoS One ; 10(12): e0144587, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26684459

RESUMEN

Avian research has begun to reveal associations between candidate genes and migratory behaviors of captive birds, yet few studies utilize genotypic, morphometric, and phenological data from wild individuals. Previous studies have identified an association between ADCYAP1 polymorphism and autumn migratory behavior (restlessness, or zugunruhe), but little is known about the relationship between ADCYAP1 and spring migratory behavior. The timing of spring migration and arrival to the breeding ground are phenological traits which could be particularly favorable for establishing territories and acquiring mates, thus important to fitness and reproductive success. Here, we investigated how individual genotypic ADCYAP1 variation and phenotypic variation (wing length and shape) of blackcaps (Sylvia atricapilla) affect spring arrival date across nine natural populations in Europe. We hypothesized that longer alleles should be associated with earlier spring arrival dates and expected the effect on arrival date to be stronger for males as they arrive earlier. However, we found that longer wings were associated with earlier spring arrival to the breeding grounds for females, but not for males. Another female-specific effect indicated an interaction between ADCYAP1 allele size and wing pointedness on the response of spring arrival: greater allele size had a positive effect on spring arrival date for females with rounder wings, while a negative effect was apparent for females with more pointed wings. Also, female heterozygotes with pointed wing tips arrived significantly earlier than both homozygotes with pointed wings and heterozygotes with round wings. Stable isotope ratios (δ2H) of a subset of blackcaps captured in Freiburg in 2011 allowed us also to assign individuals to their main overwintering areas in northwest (NW) and southwest (SW) Europe. NW males arrived significantly earlier to the Freiburg breeding site than both SW males and females in 2011. NW females had more pointed wing tips compared to SW females, but no difference in ADCYAP1 allele size was found between the different migration routes.


Asunto(s)
Migración Animal/fisiología , Passeriformes/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Alas de Animales/anatomía & histología , Animales , Femenino , Masculino , Passeriformes/anatomía & histología , Passeriformes/genética , Fenotipo , Polimorfismo Genético , Estaciones del Año , Factores Sexuales
15.
PLoS One ; 10(12): e0144264, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26656955

RESUMEN

A novel migratory polymorphism evolved within the last 60 years in blackcaps (Sylvia atricapilla) breeding sympatrically in southwestern Germany. While most individuals winter in the traditional areas in the Mediterranean, a growing number of blackcaps started migrating to Britain instead. The rapid microevolution of this new strategy has been attributed to assortative mating and better physical condition of birds wintering in Britain. However, the isolating barriers as well as the physical condition of birds are not well known. In our study, we examined whether spatial isolation occurred among individuals with distinct migratory behaviour and birds with different arrival dates also differed in physical and genetic condition. We caught blackcaps in six consecutive years upon arrival on the breeding grounds and assigned them via stable isotope analysis to their wintering areas. Analysis of the vegetation structure within blackcap territories revealed different microhabitat preferences of birds migrating to distinct wintering areas. Blackcaps arriving early on the breeding grounds had higher survival rates, better body condition and higher multilocus heterozygosities than later arriving birds. We did however not find an effect of parasite infection status on arrival time. Our results suggest that early arriving birds have disproportionate effects on population dynamics. Allochrony and habitat isolation may thus act together to facilitate ongoing divergence in hybrid zones, and migratory divides in particular.


Asunto(s)
Migración Animal/fisiología , Passeriformes/genética , Dinámica Poblacional , Aislamiento Reproductivo , Navegación Espacial/fisiología , Animales , Evolución Biológica , Cruzamiento , Alemania , Marcaje Isotópico , Región Mediterránea , Passeriformes/fisiología , Condicionamiento Físico Animal , Estaciones del Año , Reino Unido
16.
Am J Bot ; 102(9): 1453-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26391709

RESUMEN

PREMISE OF THE STUDY: Most bird-dispersed fruits are green when unripe and become colored and conspicuous when ripe, signaling that fruits are ready to be consumed and dispersed. The color pattern for fruits of Miconia albicans (Melastomataceae), however, is the opposite, with reddish unripe and green ripe fruits. We (1) verified the maintenance over time of its bicolored display, (2) tested the communicative function of unripe fruits, (3) tested the photoprotective role of anthocyanins in unripe fruits, and (4) verified whether green ripe fruits can assimilate carbon. METHODS: Using a paired experiment, we tested whether detection of ripe fruits was higher on infructescences with unripe and ripe fruits compared with infructescences with only ripe fruits. We also measured and compared gas exchange, chlorophyll a fluorescence, and heat dissipation of covered (to prevent anthocyanin synthesis) and uncovered ripe and unripe fruits. KEY RESULTS: Although the bicolored display was maintained over time, unripe fruits had no influence on bird detection and removal of ripe fruits. Ripe and unripe fruits did not assimilate CO2, but they respired instead. CONCLUSIONS: Since the communicative function of unripe fruits was not confirmed, seed dispersers are unlikely to select the display with bicolored fruits. Because of the absence of photosynthetic activity in ripe and unripe fruits and enhanced photoprotective mechanisms in ripe fruits rather than in unripe fruits, we could not confirm the photoprotective role of anthocyanins in unripe fruits. As an alternative hypothesis, we suggest that the bicolored fruit display could be an adaptation to diversify seed dispersal vectors instead of restricting dispersal to birds and that anthocyanins in unripe fruits may have a defense role against pathogens.


Asunto(s)
Melastomataceae/fisiología , Pigmentación , Dispersión de Semillas , Animales , Aves/fisiología , Brasil , Color , Frutas/crecimiento & desarrollo , Frutas/fisiología , Herbivoria , Melastomataceae/crecimiento & desarrollo
17.
Mol Ecol ; 23(23): 5712-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25345968

RESUMEN

Many endangered species suffer from the loss of genetic diversity, but some populations may be able to thrive even if genetically depleted. To investigate the underlying genetic processes of population bottlenecks, we apply an innovative approach for assessing genetic diversity in the last known population of the endangered Pale-headed Brushfinch (Atlapetes pallidiceps) in Ecuador. First, we measure genetic diversity at eleven neutral microsatellite loci and adaptive SNP variation in five Toll-like receptor (TLR) immune system genes. Bottleneck tests confirm genetic drift as the main force shaping genetic diversity in this species and indicate a 99 % reduction in population size dating back several hundred years. Second, we compare contemporary microsatellite diversity with historic museum samples of A. pallidiceps, finding no change in genetic diversity. Third, we compare genetic diversity in the Pale-headed Brushfinch with two co-occurring-related brushfinch species (Atlapetes latinuchus, Buarremon torquatus), finding a reduction of up to 91% diversity in the immune system genes but not in microsatellites. High TLR diversity is linked to decreased survival probabilities in A. pallidiceps. Low TLR diversity is thus probably an adaptation to the specific selection regime within its currently very restricted distribution (approximately 200 ha), but could severely restrict the adaptive potential of the species in the long run. Our study illustrates the importance of investigating both neutral and adaptive markers to assess the effect of population bottlenecks and for recommending specific management plans in endangered species.


Asunto(s)
Especies en Peligro de Extinción , Pinzones/genética , Sitios Genéticos , Variación Genética , Adaptación Biológica/genética , Animales , Conservación de los Recursos Naturales , Ecuador , Genética de Población , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADN , Receptores Toll-Like/genética
18.
Biol Lett ; 10(4): 20140134, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24789140

RESUMEN

A long-standing but controversial hypothesis assumes that carnivorous plants employ aggressive mimicry to increase their prey capture success. A possible mechanism is that pitcher plants use aggressive mimicry to deceive prey about the location of the pitcher's exit. Specifically, species from unrelated families sport fenestration, i.e. transparent windows on the upper surfaces of pitchers which might function to mimic the exit of the pitcher. This hypothesis has not been evaluated against alternative hypotheses predicting that fenestration functions to attract insects from afar. By manipulating fenestration, we show that it does not increase the number of Drosophila flies or of two ant species entering pitchers in Sarracenia minor nor their retention time or a pitcher's capture success. However, fenestration increased the number of Drosophila flies alighting on the pitcher compared with pitchers of the same plant without fenestration. We thus suggest that fenestration in S. minor is not an example of aggressive mimicry but rather functions in long-range attraction of prey. We highlight the need to evaluate aggressive mimicry relative to alternative concepts of plant-animal communication.


Asunto(s)
Adaptación Fisiológica , Conducta Animal , Sarraceniaceae/fisiología , Animales , Luz , Sarraceniaceae/anatomía & histología
19.
Proc Biol Sci ; 281(1782): 20133320, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24619444

RESUMEN

We present a formal model of Janzen's influential theory that competition for resources between microbes and vertebrates causes microbes to be selected to make these resources unpalatable to vertebrates. That is, fruit rots, seeds mould and meat spoils, in part, because microbes gain a selective advantage if they can alter the properties of these resources to avoid losing the resources to vertebrate consumers. A previous model had failed to find circumstances in which such a costly spoilage trait could flourish; here, we present a simple analytic model of a general situation where costly microbial spoilage is selected and persists. We argue that the key difference between the two models lies in their treatments of microbial dispersal. If microbial dispersal is sufficiently spatially constrained that different resource items can have differing microbial communities, then spoilage will be selected; however, if microbial dispersal has a strong homogenizing effect on the microbial community then spoilage will not be selected. We suspect that both regimes will exist in the natural world, and suggest how future empirical studies could explore the influence of microbial dispersal on spoilage.


Asunto(s)
Conducta Alimentaria/fisiología , Frutas/microbiología , Microbiota , Animales , Conducta de Elección , Ecosistema , Modelos Biológicos , Vertebrados
20.
Physiol Behav ; 128: 54-9, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24518866

RESUMEN

Consuming food rich in antioxidants may help organisms to increase their antioxidant defences and avoid oxidative damage. Under the hypothesis that organisms actively consume food for its antioxidant properties, they would need to do so in view of other physiological requirements, such as energy requirements. Here, we observed that Gouldian finches (Erythrura gouldiae) consumed most seeds rich in antioxidants in the middle of the day, while their consumption of staple seeds more profitable in energy intake (and poor in antioxidants) was maximal in the morning and the evening. This consumption of seeds rich in antioxidants in the middle of the day may be explicable (1) because birds took advantage of a time window associated with relaxed energy requirements to ingest antioxidant resources, or (2) because birds consumed antioxidant resources as a response to the highest antioxidant requirements in the middle of the day. If the latter hypothesis holds true, having the possibility to ingest antioxidants should be most beneficial in terms of oxidative balance in the middle of the day. Even though feeding on seeds rich in antioxidants improved Gouldian finches' overall antioxidant capacity, we did not detect any diurnal effect of antioxidant intake on plasma oxidative markers (as measured by the d-ROM and the OXY-adsorbent tests). This indicates that the diurnal pattern of antioxidant intake that we observed was most likely constrained by the high consumption of staple food to replenish or build up body reserves in the morning and in the evening, and not primarily determined by elevated antioxidant requirements in the middle of the day. Consequently, animals appear to have the possibility to increase antioxidant defences by selecting food rich in antioxidants, only when energetic constraints are relaxed.


Asunto(s)
Antioxidantes/metabolismo , Conducta Alimentaria/fisiología , Pinzones/fisiología , Alimentación Animal , Animales , Ritmo Circadiano/fisiología , Ingestión de Energía/fisiología , Conducta Alimentaria/psicología , Femenino , Masculino , Oxidación-Reducción , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...