Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oecologia ; 186(1): 141-150, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167983

RESUMEN

For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Canadá , Bovinos , Dinámica Poblacional , Conducta Predatoria
2.
Biol Lett ; 12(9)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27651531

RESUMEN

Global warming threatens to reduce population connectivity for terrestrial wildlife through significant and rapid changes to sea ice. Using genetic fingerprinting, we contrasted extant connectivity in island-dwelling Peary caribou in northern Canada with continental-migratory caribou. We next examined if sea-ice contractions in the last decades modulated population connectivity and explored the possible impact of future climate change on long-term connectivity among island caribou. We found a strong correlation between genetic and geodesic distances for both continental and Peary caribou, even after accounting for the possible effect of sea surface. Sea ice has thus been an effective corridor for Peary caribou, promoting inter-island connectivity and population mixing. Using a time series of remote sensing sea-ice data, we show that landscape resistance in the Canadian Arctic Archipelago has increased by approximately 15% since 1979 and may further increase by 20-77% by 2086 under a high-emission scenario (RCP8.5). Under the persistent increase in greenhouse gas concentrations, reduced connectivity may isolate island-dwelling caribou with potentially significant consequences for population viability.


Asunto(s)
Cubierta de Hielo , Reno/genética , Alaska , Distribución Animal , Animales , Regiones Árticas , Canadá , Cambio Climático , Islas , Repeticiones de Microsatélite , Dinámica Poblacional
3.
J Anim Ecol ; 85(2): 445-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26529139

RESUMEN

Climate can have direct and indirect effects on population dynamics via changes in resource competition or predation risk, but this influence may be modulated by density- or phase-dependent processes. We hypothesized that for ungulates, climatic conditions close to parturition have a greater influence on the predation risk of neonates during population declines, when females are already under nutritional stress triggered by food limitation. We examined the presence of phase-dependent climate-predator (PDCP) interactions on neonatal ungulate survival by comparing spatial and temporal fluctuations in climatic conditions, cause-specific mortality and per capita resource limitation. We determined cause-specific fates of 1384 caribou (Rangifer tarandus) from 10 herds in Newfoundland, spanning more than 30 years during periods of numerical increase and decline, while exposed to predation from black bears (Ursus americanus) and coyotes (Canis latrans). We conducted Cox proportional hazards analysis for competing risks, fit as a function of weather metrics, to assess pre- and post-partum climatic influences on survival on herds in population increase and decline phases. We used cumulative incidence functions to compare temporal changes in risk from predators. Our results support our main hypothesis; when caribou populations increased, weather conditions preceding calving were the main determinants of cause-specific mortality, but when populations declined, weather conditions during calving also influenced predator-driven mortality. Cause-specific analysis showed that weather conditions can differentially affect predation risk between black bears and coyotes with specific variables increasing the risk from one species and decreasing the risk from the other. For caribou, nutritional stress appears to increase predation risk on neonates, an interaction which is exacerbated by susceptibility to climatic events. These findings support the PDCP interactions framework, where maternal body condition influences susceptibility to climate-related events and, subsequently, risk from predation.


Asunto(s)
Animales Recién Nacidos/fisiología , Clima , Cadena Alimentaria , Reno/fisiología , Animales , Coyotes/fisiología , Femenino , Longevidad , Masculino , Modelos Biológicos , Terranova y Labrador , Conducta Predatoria , Modelos de Riesgos Proporcionales , Ursidae/fisiología , Tiempo (Meteorología)
4.
Methods Ecol Evol ; 5(3): 253-262, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25834721

RESUMEN

Predicting space use patterns of animals from their interactions with the environment is fundamental for understanding the effect of habitat changes on ecosystem functioning. Recent attempts to address this problem have sought to unify resource selection analysis, where animal space use is derived from available habitat quality, and mechanistic movement models, where detailed movement processes of an animal are used to predict its emergent utilization distribution. Such models bias the animal's movement towards patches that are easily available and resource-rich, and the result is a predicted probability density at a given position being a function of the habitat quality at that position. However, in reality, the probability that an animal will use a patch of the terrain tends to be a function of the resource quality in both that patch and the surrounding habitat.We propose a mechanistic model where this non-local effect of resources naturally emerges from the local movement processes, by taking into account the relative utility of both the habitat where the animal currently resides and that of where it is moving. We give statistical techniques to parametrize the model from location data and demonstrate application of these techniques to GPS location data of caribou (Rangifer tarandus) in Newfoundland.Steady-state animal probability distributions arising from the model have complex patterns that cannot be expressed simply as a function of the local quality of the habitat. In particular, large areas of good habitat are used more intensively than smaller patches of equal quality habitat, whereas isolated patches are used less frequently. Both of these are real aspects of animal space use missing from previous mechanistic resource selection models.Whilst we focus on habitats in this study, our modelling framework can be readily used with any environmental covariates and therefore represents a unification of mechanistic modelling and step selection approaches to understanding animal space use.

5.
PLoS One ; 8(12): e83837, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386287

RESUMEN

Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.


Asunto(s)
Mustelidae/genética , Filogeografía , Distribución Animal , Animales , Regiones Árticas , Teorema de Bayes , Variación Genética , Haplotipos/genética , Mustelidae/fisiología
6.
Oecologia ; 145(2): 276-81, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16001227

RESUMEN

Population density, one of the most fundamental demographic attributes, may vary systematically with spatial scale, but this scale-sensitivity is incompletely understood. We used a novel approach-based on fully censused and mapped distributions of eastern grey squirrel (Sciurus carolinensis) dreys, beaver (Castor canadensis) lodges, and moose (Alces alces)--to explore the scale-dependence of population density and its relationship to landscape features. We identified population units at several scales, both objectively, using cluster analysis, and arbitrarily, using artificial bounds centred on high-abundance sites. Densities declined with census area. For dreys, this relationship was stronger in objective versus arbitrary population units. Drey density was inconsistently related to patch area, a relationship that was positive for all patches but negative when non-occupied patches were excluded. Drey density was negatively related to the proportion of green-space and positively related to the density of buildings or roads, relationships that were accentuated at coarser scales. Mean drey densities were more sensitive to scale when calculated as organism-weighted versus area-weighted averages. Greater understanding of these scaling effects is required to facilitate comparisons of population density across studies.


Asunto(s)
Ciervos/fisiología , Ecosistema , Roedores/fisiología , Sciuridae/fisiología , Animales , Densidad de Población
7.
Oecologia ; 126(4): 507-514, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28547235

RESUMEN

Examining both spatial and temporal variation can provide insights into population limiting factors. We investigated the relative spatial and temporal changes in range use and mortality within the Red Wine Mountains caribou herd, a population that declined by approximately 75% from the 1980s to the 1990s. To extract the spatial structure of the population, we applied fuzzy cluster analysis, a method which assigns graded group membership, to space use of radio-tracked adult females, and compared these results to a hard classification based on sums-of-squares agglomerative clustering. Both approaches revealed four subpopulations. Based on the subpopulation assignments, we apportioned the number of animals, radio-days, calving events and mortalities across subpopulations before and after the decline. The results indicated that, as the herd declined, subpopulations were disproportionately affected. In general, subpopulations with the greatest range overlap with migratory caribou from the George River herd experienced comparative reductions in activity and increased mortality. The subpopulation with the least overlap exhibited the converse pattern. The infra-population imbalances were more pronounced when hard clustering was employed. Our results reiterate that refugia from other ungulates may be important in the persistence of taiga-dwelling caribou. We propose that changes across time and space are valuable assays of localised demographic change, especially where individuals exhibit spatial hyperdispersion and site fidelity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...