Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38584485

RESUMEN

Conjugated polyelectrolytes are π-conjugated polymers that contain ionic charged groups such as sulfonate (R-SO3-), carboxylate (R-COO-), or ammonium (R-NR3+) combined with a π-conjugated backbone. This perspective provides a summary review of the key developments in the field, starting from the first reports of their synthesis and properties to application-focused developments. The applications include optical sensors for molecular and biomolecular targets, organic electronic applications, and specific biological applications including cellular imaging and photodynamic therapy. This perspective concludes with a discussion of where the field of conjugated polyelectrolytes is expected to lead in the coming years.

2.
ACS Cent Sci ; 10(1): 1-3, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292610
3.
Artículo en Inglés | MEDLINE | ID: mdl-38265208

RESUMEN

We report the light-activated antibacterial activity of a new class of phosphonium (R-PMe3+)-substituted conjugated polyelectrolytes (CPEs). These polyelectrolytes feature a poly(phenylene ethynylene) (PPE) conjugated backbone substituted with side groups with the structure -O-(CH2)nPMe3+, where n = 3 or 6. The length of the side groups has an effect on the hydrophobic character of the CPEs and their propensity to interact with bacterial membranes. In a separate study, these phosphonium-substituted PPE CPEs were demonstrated to photosensitize singlet oxygen (1O2) and reactive oxygen species, a key factor for the photoinduced inactivation of bacteria. In this study, in vitro antibacterial assays against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were performed by employing the series of polyelectrolytes under both dark and illumination conditions. In general, the phosphonium-substituted CPEs displayed profound light-activated biocidal activity, with >99% colony forming unit (CFU) reduction after 15 min of light exposure (16 mW cm-2) at a ≤20 µM CPE concentration. Strong biocidal activity was also observed in the dark for a CPE concentration of 20 µM against S. aureus; however, higher concentrations (200 µM) were needed to enable dark inactivation of E. coli. The dark activity is ascribed to bacterial membrane disruption by the CPEs, supported by a correlation of dark biocidal activity with the chain length of the side groups. The light-activated biocidal activity is associated with the ability of the CPEs to sensitize ROS, which is cytotoxic to the microorganisms. Serial dilution bacterial plating experiments revealed that the series of CPEs was able to induce a >5-log kill versus E. coli with 15 min of exposure to a blue LED source (16 mW cm-2).

4.
ACS Appl Mater Interfaces ; 15(51): 59099-59102, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149318
7.
ACS Appl Mater Interfaces ; 15(38): 45399-45410, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37713473

RESUMEN

A series of diblock oligomers containing oligothiophene (Tn, n = 4, 5) and 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadizole (TBT) segments, functionalized with carboxylic acid anchoring groups, were prepared and anchored to mesoporous TiO2 films to study wavelength-dependent interfacial electron transfer mechanisms. Thin films of the surface-anchored diblock oligomers contained two absorption bands centered at 400 and 500 nm, corresponding to the Tn and TBT blocks, respectively. Pulsed-laser excitation of the oligomer-sensitized films yielded local excited-states that promoted electron injection into TiO2. The injection pathway was dependent on the excitation wavelength, as electron injection occurred from the oligomer block that was locally excited. Recombination between the injected electron and the oxidized oligomer was sensitive to the bridging unit that separates the oligomer conjugated segments (-C≡C- vs trans-Pt(PBu3)2-). When the bridge facilitated strong coupling between the two blocks (-C≡C- bridge), the excitation wavelength had no effect on the recombination pathway, as the hole was delocalized over the entire oligomer. However, in the weak coupling case (Pt(PBu3)2- bridge), selective excitation resulted in wavelength-dependent hole localization that persisted to the µs time scale, providing control over the recombination pathway by varying the excitation wavelength. Dye-sensitized solar cells (DSSCs) were fabricated by using the diblock oligomers as sensitizers. The photocurrent action spectra were measured, and the absorbed photon-to-current efficiency (APCE) provided further insight into the electron-transfer mechanisms that are operative under continuous illumination.

8.
Phys Chem Chem Phys ; 25(35): 23685-23695, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37610339

RESUMEN

This paper reports an investigation of the electronic structure and photophysical properties of two "diblock" π-conjugated oligomers (T4-TBT and T8-TBT) that feature electron rich tetra(thiophene) (T4) or octa(thiophene) (T8) segments linked to an electron poor 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT) moiety. Electrochemistry and UV-visible absorption spectroscopy reveals that the diblock oligomers display redox and absorption features that can be attributed to the Tn and TBT units. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations support the experimental electrochemistry and optical spectroscopy results, suggesting that the frontier orbitals on the diblock oligomers retain characteristics of the individual π-conjugated segments. However, low energy optical transitions are anticipated to arise from Tn to TBT charge transfer. Fluorescence spectroscopy on the diblock oligomers reveals that the oligomers feature strongly solvent dependent fluorescence. In non-polar solvents (hexane, toluene), the emission is structured with a moderate Stokes shift; however, in more polar solvents the emission becomes broader, and red-shifts significantly. Transient absorption spectroscopy on timescales from femtoseconds (fs) to microseconds (µs) reveals that in non-polar solvents excitation produces a singlet excited state (LE) that decays uniformly to the ground state in parallel with intersystem crossing to a triplet state. By contrast, in more polar solvents, excitation produces a very short-lived excited state (1-3 ps) which evolves rapidly into a second excited state that is attributed to the charge transfer (CT) state. The fast dynamics are associated with crossing from the LE state, which is populated initially by photoexcitation, into the CT state, which then decays to the ground state. The photophysical properties and dynamics of the LE and CT excited states are very similar for T4-TBT and T8-TBT, suggesting that the length of the oligo(thiophene) segment does not have a strong influence on the energy, structure or dynamics of the LE and CT excited states.

9.
Dalton Trans ; 52(33): 11535-11542, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37540137

RESUMEN

N-heterocyclic carbene complexes of the type trans-(NHC)2PtII(CC-Ar)2 (where Ar = phenyl or substituted phenyl) are of interest as violet and blue phosphors. These complexes emit efficient phosphorescence in solution and in the solid state, and they have been applied as phosphors in organic light emitting diodes. This study explores the effect of bromine substitution on the trans-(NHC)2PtII(CC-Ar)2 chromophore through photophysical studies of a pair of complexes in which the phenyl groups feature either 3,5-dibromo- or 4-monobromo-substituents (IPt-DB and IPt-MB, respectively). The Br atoms were introduced as heavy atom(s) with the aim to enhance spin-orbit coupling and increase the radiative and non-radiative decay rates of the phosphorescent triplet state. Both IPt-MB and IPt-DB exhibit sky-blue phosphorescence in solution and in PMMA matrix. Interestingly, the emission quantum yield and lifetime of IPt-MB are substantially lower compared to IPt-DB in solution. This effect is attributed to a substantially larger non-radiative decay rate in the mono-bromo complex. Analysis of the photophysical data, combined with DFT and TD-DFT calculations, suggest that the difference in photophysical properties of the two complexes is related to the position of the Br-substituents on the phenyl acetylide rings. In short, in IPt-MB, the Br-substituents are located para-to the Pt-CC-unit, and this gives rise to stronger electron-vibrational coupling in the excited state, enhancing the rate of non-radiative decay.

10.
Molecules ; 28(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241856

RESUMEN

Non-covalent interactions have been extensively used to fabricate nanoscale architectures in supramolecular chemistry. However, the biomimetic self-assembly of diverse nanostructures in aqueous solution with reversibility induced by different important biomolecules remains a challenge. Here, we report the synthesis and aqueous self-assembly of two chiral cationic porphyrins substituted with different types of side chains (branched or linear). Helical H-aggregates are induced by pyrophosphate (PPi) as indicated by circular dichroism (CD) measurement, while J-aggregates are formed with adenosine triphosphate (ATP) for the two porphyrins. By modifying the peripheral side chains from linear to a branched structure, more pronounced H- or J-type aggregation was promoted through the interactions between cationic porphyrins and the biological phosphate ions. Moreover, the phosphate-induced self-assembly of the cationic porphyrins is reversible in the presence of the enzyme alkaline phosphatase (ALP) and repeated addition of phosphates.


Asunto(s)
Adenosina Trifosfato , Difosfatos , Nanoestructuras , Porfirinas , Porfirinas/síntesis química , Cationes/síntesis química , Difosfatos/química , Adenosina Trifosfato/química , Fosfatasa Alcalina/química , Estructura Molecular , Simulación del Acoplamiento Molecular , Nanoestructuras/química , Electricidad Estática , Agua/química
11.
ACS Sens ; 8(7): 2591-2597, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37235879

RESUMEN

The determination of trypsin activity in human urine is important for evaluating pancreatic disease. We designed an effective fluorescence sensing strategy based on a self-assembled amphiphilic pyrene/protamine complex system that provides an amplified fluorescence response for highly sensitive and selective detection of trypsin. In aqueous solution, the functionalized pyrene formed fluorescent, π-extended aggregates inside micelles, which were effectively quenched by protamine (a trypsin substrate). However, this quenched fluorescence was very sensitively recovered by the trypsin's enzymatic reaction, and this was attributed to a marked reduction in enhanced exciton migration caused by protamine in π-delocalized pyrene aggregates. The devised sensing platform was successfully utilized to selectively and sensitively detect trypsin at very low concentrations (0.03-0.5 µg mL-1) in non-pretreated human urine and to screen for trypsin inhibitors at concentrations of 0.1-5.0 µg mL-1.


Asunto(s)
Colorantes Fluorescentes , Protaminas , Humanos , Tripsina , Fluorescencia , Pirenos
13.
J Phys Chem B ; 127(8): 1819-1827, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36807993

RESUMEN

Structural modifications to molecular systems that lead to the control of photon emission processes at the interfaces between photoactive materials play a key role in the development of fluorescence sensors, X-ray imaging scintillators, and organic light-emitting diodes (OLEDs). In this work, two donor-acceptor systems were used to explore and reveal the effects of slight changes in chemical structure on interfacial excited-state transfer processes. A thermally activated delayed fluorescence (TADF) molecule was chosen as the molecular acceptor. Meanwhile, two benzoselenadiazole-core MOF linker precursors, Ac-SDZ and SDZ, with the presence and absence of a C≡C bridge, respectively, were carefully chosen as energy and/or electron-donor moieties. We found that the SDZ -TADF donor-acceptor system exhibited efficient energy transfer, as evidenced by steady-state and time-resolved laser spectroscopy. Furthermore, our results demonstrated that the Ac-SDZ-TADF system exhibited both interfacial energy and electron transfer processes. Femtosecond-mid-IR (fs-mid-IR) transient absorption measurements revealed that the electron transfer process takes place on the picosecond timescale. Time-dependent density functional theory (TD-DFT) calculations confirmed that photoinduced electron transfer occurred in this system and demonstrated that it takes place from C≡C in Ac-SDZ to the central unit of the TADF molecule. This work provides a straightforward way to modulate and tune excited-state energy/charge transfer processes at donor-acceptor interfaces.

14.
ACS Appl Mater Interfaces ; 15(1): 1-2, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36632631
15.
Dalton Trans ; 51(48): 18520-18527, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36444537

RESUMEN

Described is an approach to preparing the first iClick network metallopolymers with porous properties. Treating digoldazido complex 2-AuN3 with trigoldacetylide 3-AuPPh3 or 3-AuPEt3, trialkyne 3-H, tetragoldacetylide 4-AuPPh3, or tetraalkyne 4-H in CH2Cl2 affords five iClick network metallopolymers 5-AuPPh3, 5-AuPEt3, 5-H, 6-AuPPh3, and 6-H. Confirmation of the iClick network metallopolymers comes from FTIR, 13C solid-state cross-coupling magic angle spinning (CPMAS) NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nitrogen and CO2 sorption analysis. Employing model complexes 7-AuPPh3, 7-AuPEt3, 7-H, 8-AuPPh3, and 8-H provides structural insights due to the insolubility of iClick network metallopolymers.


Asunto(s)
Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética/métodos
17.
ACS Appl Mater Interfaces ; 14(14): 15996-16005, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35360898

RESUMEN

We report a water-soluble poly(phenylene ethynylene) (PPE-Pt(IV)) that is functionalized with oxidized oxaliplatin Pt(IV) units and its use for photoactivated chemotherapy. The photoactivation strategy is based on photoinduced electron transfer from the PPE backbone to oxaliplatin Pt(IV) as an electron acceptor; this process triggers the release of oxaliplatin, which is a clinically used anticancer drug. Mechanistic studies carried out using steady-state and time-resolved fluorescence spectroscopy coupled with picosecond-nanosecond transient absorption support the hypothesis that electron transfer triggers the drug release. Photoactivation is effective, producing oxaliplatin with a good chemical yield in less than 1 h of photolysis (400 nm, 5 mW cm-2). Photorelease of oxaliplatin from PPE-Pt(IV) can also be effected with two-photon excitation by using 100 fs pulsed light at 725 nm. Cytotoxicity studies using SK-OV-3 human ovarian cancer cells demonstrate that without photoactivation PPE-Pt(IV) is not cytotoxic at concentrations up to 10 µM in polymer repeating unit (PRU) concentration. However, following a short period of 460 nm irradiation, oxaliplatin is released from PPE-Pt(IV), resulting in cytotoxicity at concentrations as low as 2.5 µM PRU.


Asunto(s)
Antineoplásicos , Polímeros , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Oxaliplatino/farmacología , Polímeros/química , Espectrometría de Fluorescencia
18.
ACS Appl Mater Interfaces ; 14(18): 20506-20519, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35473368

RESUMEN

Water-soluble conjugated polymers (WS-CPs) have found widespread use in bioapplications ranging from in vitro optical sensing to in vivo phototherapy. Modification of WS-CPs with specific molecular functional units is necessary to enable them to interact with biological targets. These targets include proteins, nucleic acids, antibodies, cells, and intracellular components. WS-CPs have been modified with covalently linked sugars, peptides, nucleic acids, biotin, proteins, and other biorecognition elements. The objective of this article is to comprehensively review the various synthetic chemistries that have been used to covalently link biofunctional groups onto WS-CP platforms. These chemistries include amidation, nucleophilic substitution, Click reactions, and conjugate addition. Different types of WS-CP backbones have been used as platforms including poly(fluorene), poly(phenylene ethynylene), polythiophene, poly(phenylenevinylene), and others. Example applications of biofunctionalized WS-CPs are also reviewed. These include examples of protein sensing, flow cytometry labeling, and cancer therapy. The major challenges and future development of functionalized conjugated polymers are also discussed.


Asunto(s)
Ácidos Nucleicos , Agua , Biotina/química , Fototerapia , Polímeros/química , Agua/química
19.
ACS Appl Mater Interfaces ; 14(4): 4892-4898, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040619

RESUMEN

This paper presents results of a study of a new cationic oligomer that contains end groups and a chromophore affording inactivation of SARS-CoV-2 by visible light irradiation in solution or as a solid coating on paper wipes and glass fiber filtration substrates. A key finding of this study is that the cationic oligomer with a central thiophene ring and imidazolium charged groups gives outstanding performance in both the killing of E. coli bacterial cells and inactivation of the virus at very short times. Our introduction of cationic N-methyl imidazolium groups enhances the light activation process for both E. coli and SARS-CoV-2 but dampens the killing of the bacteria and eliminates the inactivation of the virus in the dark. For the studies with this oligomer in solution at a concentration of 1 µg/mL and E. coli, we obtain 3 log killing of the bacteria with 10 min of irradiation with LuzChem cool white lights (mimicking indoor illumination). With the oligomer in solution at a concentration of 10 µg/mL, we observe 4 log inactivation (99.99%) in 5 min of irradiation and total inactivation after 10 min. The oligomer is quite active against E. coli on oligomer-coated paper wipes and glass fiber filter supports. The SARS-CoV-2 is also inactivated by oligomer-coated glass fiber filter papers. This study indicates that these oligomer-coated materials may be very useful as wipes and filtration materials.


Asunto(s)
Antivirales/farmacología , COVID-19/terapia , SARS-CoV-2/efectos de la radiación , COVID-19/genética , COVID-19/virología , Cationes/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Humanos , Luz , Fototerapia , SARS-CoV-2/patogenicidad , Rayos Ultravioleta , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación
20.
J Phys Chem B ; 125(48): 13298-13308, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34846146

RESUMEN

Aggregation-induced emission enhancement (AIEE) is a process recently exploited in solid-state materials and organic luminophores, and it is explained by tight-molecular packaging. However, solution-phase AIEE and its formation mechanism have not been widely explored. This work investigated AIEE phenomena in two donor-acceptor-donor-type benzodiazole-based molecules (the organic building block in metal-organic frameworks) with an acetylene and phenyl π-conjugated backbone tapered with a carboxylic acid group at either end. This was done using time-resolved electronic and vibrational spectroscopy in conjunction with time-dependent density functional theory (TD-DFT) calculations. Fluorescence up-conversion spectroscopy and time-correlated single-photon counting conclusively showed an intramolecular charge transfer-driven aggregate emission enhancement. This is shown by a red spectral shift of the emission spectra as well as an increase in the fluorescence lifetime from 746 ps at 1.0 × 10-11 to 2.48 ns at 2.0 × 10-3 M. The TD-DFT calculations showed that a restricted intramolecular rotation mechanism is responsible for the enhanced emission. The femtosecond infrared (IR) transient absorption results directly revealed the structural dynamics of aggregate formation, as evident from the evolution of the C≡C vibrational marker mode of the acetylene unit upon photoexcitation. Moreover, the IR data clearly indicated that the aggregation process occurred over a time scale of 10 ps, which is consistent with the fluorescence up-conversion results. Interestingly, time-resolved results and DFT calculations clearly demonstrated that both acetylene bonds and the sulfur atom are the key requirements to achieve such a controllable aggregation-induced fluorescence enhancement. The finding of the work not only shows how slight changes in the chemical structure of fluorescent chromophores could make a tremendous change in their optical behavior but also prompts a surge of research into a profound understanding of the mechanistic origins of this phenomenon. This may lead to the discovery of new chemical strategies that aim to synthesize novel chromophores with excellent optical properties for light-harvesting applications.


Asunto(s)
Estructuras Metalorgánicas , Tiadiazoles , Colorantes Fluorescentes , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...