Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 88(20): 9873-9880, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27656755

RESUMEN

A full field-X-ray camera (FF-XRC) was developed for performing the simultaneous mapping of chemical elements with a high lateral resolution. The device is based on a conventional CCD detector coupled to a straight shaped polycapillary. Samples are illuminated at once with a broad primary beam that can consist of X-rays or charged particles in two different analytical setups. The characteristic photons induced in the samples are guided by the polycapillary to the detector allowing the elemental imaging without the need for scanning. A single photon counting detection operated in a multiframe acquisition mode and a processing algorithm developed for event hitting reconstruction have enabled one to use the CCD as a high energy resolution X-ray detector. A novel software with a graphical user interface (GUI) programmed in Matlab allows full control of the device and the real-time imaging with a region-of-interest (ROI) method. At the end of the measurement, the software produces spectra for each of the pixels in the detector allowing the application of a least-squares fitting with external analytical tools. The FF-XRC is very compact and can be installed in different experimental setups. This work shows the potentialities of the instrument in both a full field-micro X-ray fluorescence (FF-MXRF) tabletop device and in a full field-micro particle induced X-ray emission (FF-MPIXE) end-station operated with an external proton beam. Some examples of applications are given as well.

2.
Artículo en Inglés | MEDLINE | ID: mdl-24357889

RESUMEN

High resolution X-ray radiography and computed tomography are excellent techniques for non-destructive characterization of an object under investigation at a spatial resolution in the micrometer range. However, as the image contrast depends on both chemical composition and material density, no chemical information is obtained from this data. Furthermore, lab-based measurements are affected by the polychromatic X-ray beam, which results in beam hardening effects. New types of X-ray detectors which provide spectral information on the measured X-ray beam can help to overcome these limitations. In this paper, an energy dispersive CCD detector with high spectral resolution is characterized for use in high resolution radiography and tomography, where a focus is put on the experimental conditions and requirements of both measurement techniques.

3.
Anal Chem ; 85(12): 5857-66, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23662905

RESUMEN

Phoenician ivory objects (8(th) century B.C., Syria) from the collections of the Badisches Landesmuseum, Karlsruhe, Germany, have been studied with full field X-ray fluorescence microimaging, using synchrotron radiation (SR-FF-microXRF). The innovative Color X-ray Camera (CXC), a full-field detection device (SLcam), was used at the X-ray fluorescence beamline of the ANKA synchrotron facility (ANKA-FLUO, KIT, Karlsruhe, Germany) to noninvasively study trace metal distributions at the surface of the archeological ivory objects. The outstanding strength of the imaging technique with the CXC is the capability to record the full XRF spectrum with a spatial resolution of 48 µm on a zone of a size of 11.9 × 12.3 mm(2) (264 × 264 pixels). For each analyzed region, 69696 spectra were simultaneously recorded. The principal elements detected are P, Ca, and Sr, coming from the ivory material itself; Cu, characteristic of pigments; Fe and Pb, representing sediments or pigments; Mn, revealing deposited soil minerals; Ti, indicating restoration processes or correlated with Fe sediment traces; and Au, linked to a former gilding. This provides essential information for the assessment of the original appearance of the ivory carvings. The determined elemental maps specific of possible pigments are superimposed on one another to visualize their respective distributions and reconstruct the original polychromy and gilding. Reliable hypotheses for the reconstruction of the original polychromy of the carved ivories are postulated on this basis.

4.
Chemphyschem ; 11(10): 2118-23, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20564273

RESUMEN

Measurements of ion distributions at a charged solid-liquid interface using X-ray standing waves (XSW) are presented. High energy synchrotron radiation (17.48 keV) is used to produce an XSW pattern inside a thin water film on a silicon wafer. The liquid phase is an aqueous solution containing Br and Rb ions. The surface charge is adjusted by titration. Measurements are performed over a pH range from 2.2-9, using the native Si oxide layer and functional (amine) groups as surface charge. The Debye length, indicating the extension of the diffuse layer, could be measured with values varying between 1-4 nm. For functionalized wafers, the pH dependent change from attraction to repulsion of an ion species could be detected, indicating the isoelectric point. In combination with the measurement of the streaming current, the surface charge of the sample could be quantified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA