Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 23(12): 101775, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33294784

RESUMEN

Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate's TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future.

2.
Semin Cell Dev Biol ; 105: 86-101, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32423851

RESUMEN

γ-Secretase is an intramembrane aspartyl-protease catalyzing the final step in the regulated intramembrane proteolysis of a large number of single-span type-1 transmembrane proteins. The most extensively studied substrates are the amyloid-ß precursor protein (APP) and the NOTCH receptors. An important technique for the characterization of interactions and conformational changes enabling γ-secretase to perform hydrolysis within the confines of the membrane are molecular dynamics simulations on different time and length scales. Here, we review structural and dynamical features of γ-secretase and its substrates including flexibility descriptions from simulations and experiments. We address (1) conformational sampling of apo-enzyme and unbound substrates (exemplified for APP, NOTCH1 and the apparent non-substrate integrin ß1), (2) substrate recruitment pathways, (3) conformational changes associated with the formation of the recognition complex, (4) cleavage-site unfolding upon interaction with the enzyme's active site, (5) substrate processing after endoproteolysis, and (6) inhibition and modulation of γ-secretase. We conclude with still open questions and suggest further investigations in order to advance our understanding on how γ-secretase selects and processes substrates. This knowledge will improve the ability to better target substrates selectively for therapeutic applications.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Humanos
3.
Biophys J ; 116(11): 2103-2120, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31130234

RESUMEN

Intramembrane cleavage of the ß-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Simulación de Dinámica Molecular , Proteolisis , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Mutación , Dominios Proteicos
4.
Sci Rep ; 9(1): 5321, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926830

RESUMEN

Cleavage of the amyloid precursor protein's (APP) transmembrane domain (TMD) by γ-secretase is a crucial step in the aetiology of Alzheimer's Disease (AD). Mutations in the APP TMD alter cleavage and lead to familial forms of AD (FAD). The majority of FAD mutations shift the preference of initial cleavage from ε49 to ε48, thus raising the AD-related Aß42/Aß40 ratio. The I45T mutation is among the few FAD mutations that do not alter ε-site preference, while it dramatically reduces the efficiency of ε-cleavage. Here, we investigate the impact of the I45T mutation on the backbone dynamics of the substrate TMD. Amide exchange experiments and molecular dynamics simulations in solvent and a lipid bilayer reveal an increased stability of amide hydrogen bonds at the ζ- and γ-cleavage sites. Stiffening of the H-bond network is caused by an additional H-bond between the T45 side chain and the TMD backbone, which alters dynamics within the cleavage domain. In particular, the increased H-bond stability inhibits an upward movement of the ε-sites in the I45T mutant. Thus, an altered presentation of ε-sites to the active site of γ-secretase as a consequence of restricted local flexibility provides a rationale for reduced ε-cleavage efficiency of the I45T mutant.


Asunto(s)
Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/química , Péptidos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Enlace de Hidrógeno , Mutación , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica
5.
PLoS One ; 13(7): e0200077, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29966005

RESUMEN

The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Membrana Celular/metabolismo , Enfermedad de Alzheimer/genética , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos
6.
Biochemistry ; 57(8): 1326-1337, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29389107

RESUMEN

Flexible transmembrane helices frequently support the conformational transitions between different functional states of membrane proteins. While proline is well known to distort and destabilize transmembrane helices, the role of glycine is still debated. Here, we systematically investigated the effect of glycine on transmembrane helix flexibility by placing it at different sites within the otherwise uniform leucine/valine repeat sequence of the LV16 model helix. We show that amide deuterium/hydrogen exchange kinetics are increased near glycine. Molecular dynamics simulations reproduce the measured exchange kinetics and reveal, at atomic resolution, a severe packing defect at glycine that enhances local hydration. Furthermore, glycine alters H-bond occupancies and triggers a redistribution of α-helical and 310-helical H-bonds. These effects facilitate local helix bending at the glycine site and change the collective dynamics of the helix.


Asunto(s)
Glicina/química , Proteínas de la Membrana/química , Péptidos/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Conformación Proteica , Conformación Proteica en Hélice alfa , Agua/química
7.
Biochemistry ; 55(9): 1287-90, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26894260

RESUMEN

Little is known about how a membrane can regulate interactions between transmembrane helices. Here, we show that strong self-interaction of the transmembrane helix of human quiescin sulfhydryl oxidase 2 rests on a motif of conserved amino acids comprising one face of the helix. Atomistic molecular dynamics simulations suggest that water molecules enter the helix-helix interface and connect serine residues of both partner helices. In addition, an interfacial tyrosine can interact with noninterfacial water or lipid. Dimerization of this transmembrane helix might therefore be controlled by membrane properties controlling water permeation and/or by the lipid composition of the membrane.


Asunto(s)
Secuencias Hélice-Asa-Hélice/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Estructura Secundaria de Proteína
8.
Biophys J ; 106(6): 1318-26, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24655507

RESUMEN

Many transmembrane helices contain serine and/or threonine residues whose side chains form intrahelical H-bonds with upstream carbonyl oxygens. Here, we investigated the impact of threonine side-chain/main-chain backbonding on the backbone dynamics of the amyloid precursor protein transmembrane helix. This helix consists of a N-terminal dimerization region and a C-terminal cleavage region, which is processed by γ-secretase to a series of products. Threonine mutations within this transmembrane helix are known to alter the cleavage pattern, which can lead to early-onset Alzheimer's disease. Circular dichroism spectroscopy and amide exchange experiments of synthetic transmembrane domain peptides reveal that mutating threonine enhances the flexibility of this helix. Molecular dynamics simulations show that the mutations reduce intrahelical amide H-bonding and H-bond lifetimes. In addition, the removal of side-chain/main-chain backbonding distorts the helix, which alters bending and rotation at a diglycine hinge connecting the dimerization and cleavage regions. We propose that the backbone dynamics of the substrate profoundly affects the way by which the substrate is presented to the catalytic site within the enzyme. Changing this conformational flexibility may thus change the pattern of proteolytic processing.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Simulación de Dinámica Molecular , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animales , Humanos , Enlace de Hidrógeno , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína
9.
Chembiochem ; 14(15): 1943-8, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24115334

RESUMEN

Wobbly backbone: The backbone dynamics of the amyloid precursor protein (APP) transmembrane helix was compared to those of other transmembrane domains. In contrast to expectation, no above-average backbone dynamics was found for the APP transmembrane helix; the dynamics thus appears not to be optimized for cleavage.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Proteolisis , Humanos , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
10.
J Am Chem Soc ; 135(4): 1317-29, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23265086

RESUMEN

The etiology of Alzheimer's disease depends on the relative abundance of different amyloid-ß (Aß) peptide species. These peptides are produced by sequential proteolytic cleavage within the transmembrane helix of the 99 residue C-terminal fragment of the amyloid precursor protein (C99) by the intramembrane protease γ-secretase. Intramembrane proteolysis is thought to require local unfolding of the substrate helix, which has been proposed to be cleaved as a homodimer. Here, we investigated the backbone dynamics of the substrate helix. Amide exchange experiments of monomeric recombinant C99 and of synthetic transmembrane domain peptides reveal that the N-terminal Gly-rich homodimerization domain exchanges much faster than the C-terminal cleavage region. MD simulations corroborate the differential backbone dynamics, indicate a bending motion at a diglycine motif connecting dimerization and cleavage regions, and detect significantly different H-bond stabilities at the initial cleavage sites. Our results are consistent with the following hypotheses about cleavage of the substrate: First, the GlyGly hinge may precisely position the substrate within γ-secretase such that its catalytic center must start proteolysis at the known initial cleavage sites. Second, the ratio of cleavage products formed by subsequent sequential proteolysis could be influenced by differential extents of solvation and by the stabilities of H-bonds at alternate initial sites. Third, the flexibility of the Gly-rich domain may facilitate substrate movement within the enzyme during sequential proteolysis. Fourth, dimerization may affect substrate processing by decreasing the dynamics of the dimerization region and by increasing that of the C-terminal part of the cleavage region.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Termodinámica , Secretasas de la Proteína Precursora del Amiloide/química , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/química , Modelos Moleculares
11.
Biophys J ; 99(8): 2541-9, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20959095

RESUMEN

The transmembrane domains (TMDs) of membrane-fusogenic proteins contain an overabundance of ß-branched residues. In a previous effort to systematically study the relation among valine content, fusogenicity, and helix dynamics, we developed model TMDs that we termed LV-peptides. The content and position of valine in LV-peptides determine their fusogenicity and backbone dynamics, as shown experimentally. Here, we analyze their conformational dynamics and the underlying molecular forces using molecular-dynamics simulations. Our study reveals that backbone dynamics is correlated with the efficiency of side-chain to side-chain van der Waals packing between consecutive turns of the helix. Leu side chains rapidly interconvert between two rotameric states, thus favoring contacts to its i±3 and i±4 neighbors. Stereochemical restraints acting on valine side chains in the α-helix force both ß-substituents into an orientation where i,i±3 interactions are less favorable than i,i±4 interactions, thus inducing a local packing deficiency at VV3 motifs. We provide a quantitative molecular model to explain the relationship among chain connectivity, side-chain mobility, and backbone flexibility. We expect that this mechanism also defines the backbone flexibility of natural TMDs.


Asunto(s)
Membrana Celular/química , Simulación de Dinámica Molecular , Péptidos/química , Amidas/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Isomerismo , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Solventes/química , Trifluoroetanol/química , Agua/química
12.
Phys Chem Chem Phys ; 8(11): 1315-20, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16633612

RESUMEN

We present pressure tuning hole burning experiments with the enzyme ribonuclease A using the UV-absorbing amino acid tyrosine as a probe. We show that, at 2 K, the protein is intact, and that at least four different regions which we associate with different tyrosine sites can be distinguished through their specific response to pressure. For one site we could determine the compressibility to 0.15 GPa(-1). Upon denaturing the protein with guanidine hydrochloride, one of the tyrosine sites is preserved to a large extent. Reducing the sulfur bonds has a more drastic effect: the tyrosine sites lose most of their individual features and their compressibilities come close to that of tyrosine in solution.


Asunto(s)
Ribonucleasa Pancreática/química , Espectrofotometría Ultravioleta/métodos , Dicroismo Circular
13.
Biochim Biophys Acta ; 1749(2): 187-213, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15893966

RESUMEN

We focus on the various aspects of the physics related to the stability of proteins. We review the pure thermodynamic aspects of the response of a protein to pressure and temperature variations and discuss the respective stability phase diagram. We relate the experimentally observed shape of this diagram to the low degree of correlation between the fluctuations of enthalpy and volume changes associated with the folding-denaturing transition and draw attention to the fact that one order parameter is not enough to characterize the transition. We discuss in detail microscopic aspects of the various contributions to the free energy gap of proteins and put emphasis on how a cosolvent may either enlarge or diminish this gap. We review briefly the various experimental approaches to measure changes in protein stability induced by cosolvents, denaturants, but also by pressure and temperature. Finally, we discuss in detail our own molecular dynamics simulations on cytochrome c and show what happens under high pressure, how glycerol influences structure and volume fluctuations, and how all this compares with experiments.


Asunto(s)
Biofisica , Modelos Moleculares , Proteínas/química , Solventes/química , Temperatura , Fenómenos Biofísicos , Simulación por Computador , Citocromos c/química , Presión , Desnaturalización Proteica , Pliegue de Proteína , Proteínas/metabolismo , Termodinámica
14.
Biophys J ; 89(1): 64-75, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15834001

RESUMEN

Spectroscopy with probe molecules yields local information on the environment of the probe. In this article we compare local compressibilities of cytochrome-c as obtained from molecular dynamics simulations with experimental results as obtained from spectroscopic measurements. The simulations show that the protein-core around the heme is much less compressible in a glycerol/water solvent than in pure water. The pocket is also much less compressible than the protein as a whole, although the compressibility of the water inside the rather incompressible protein-core is almost liquidlike. We show that the local compressibility values capture the collective correlations of local volume fluctuations with volume fluctuations in the surrounding protein-solvent system. The decoupling of the volume fluctuations of the core from the solvent shell explains the reduction of the heme-core-compressibility in glycerol/water solvent. This decoupling could be traced back to the suppression of the exchange between pocket-water and hydration-shell-water upon addition of glycerol as co-solvent.


Asunto(s)
Citocromos c/química , Miocardio/metabolismo , Proteínas/química , Absorción , Algoritmos , Animales , Simulación por Computador , Glicerol/química , Hemo/química , Caballos , Modelos Moleculares , Porfirinas/química , Presión , Programas Informáticos , Solventes/química , Espectrofotometría , Estrés Mecánico , Temperatura , Resistencia a la Tracción , Tirosina/química , Agua/química
15.
Phys Chem Chem Phys ; 7(10): 2217-24, 2005 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19791416

RESUMEN

We present a hole burning study on insulin in a glycerol-water solvent by using the intrinsic amino acid tyrosine as a photochemical probe. The focus of the experiments is on the comparative pressure response of the spectral holes for insulin in its native state, in its chemically denatured state and for tyrosine in the glycerol-water solvent. From an analysis of the color effect of the pressure response, we can identify two different spectral ranges characterized by a markedly different sensitivity to pressure. We conclude that at least two tyrosines (or two groups of tyrosines) out of the eight in the insulin dimer are photochemically labeled, and that they are characterized by markedly different compressibilities, namely 0.08 and 0.13 GPa(-1), respectively. An interesting observation concerns the compressibility in the unfolded state: It is significantly lower and closer to the value measured for the pure tyrosine molecule in a glycerol-water solvent. In contrast to the native state, the response of the various tyrosines in the unfolded state to pressure variations is quite uniform. The experiments are compared with MD simulations of monomeric insulin at ambient temperature. The computational results show that the local compressibilities around the different tyrosines vary significantly and that they strongly depend on whether just the first shell of molecules or the first two shells are included in the local volume.


Asunto(s)
Insulina/química , Simulación por Computador , Glicerol , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Solventes , Tirosina/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA