Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(12): 2053-2074, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36746628

RESUMEN

The hair bundle is the universal mechanosensory organelle of auditory, vestibular, and lateral-line systems. A bundle comprises mechanically coupled stereocilia, whose displacements in response to stimulation activate a receptor current. The similarity of stereociliary displacements within a bundle regulates fundamental properties of the receptor current like its speed, magnitude, and sensitivity. However, the dynamics of individual stereocilia from the mammalian cochlea in response to a known bundle stimulus has not been quantified. We developed a novel high-speed system, which dynamically stimulates and tracks individual inner-hair-cell stereocilia from male and female rats. Stimulating two to three of the tallest stereocilia within a bundle (nonuniform stimulation) caused dissimilar stereociliary displacements. Stereocilia farther from the stimulator moved less, but with little delay, implying that there is little slack in the system. Along the axis of mechanical sensitivity, stereocilium displacements peaked and reversed direction in response to a step stimulus. A viscoelastic model explained the observed displacement dynamics, which implies that coupling between the tallest stereocilia is effectively viscoelastic. Coupling elements between the tallest inner-hair-cell stereocilia were two to three times stronger than elements anchoring stereocilia to the surface of the cell but were 100-10,000 times weaker than those of a well-studied noncochlear hair bundle. Coupling was too weak to ensure that stereocilia move similarly in response to nonuniform stimulation at auditory frequencies. Our results imply that more uniform stimulation across the tallest stereocilia of an inner-hair-cell bundle in vivo is required to ensure stereociliary displacement similarity, increasing the speed, sensitivity, and magnitude of the receptor current.SIGNIFICANCE STATEMENT Generation of the receptor current of the hair cell is the first step in electrically encoding auditory information in the hearing organs of all vertebrates. The receptor current is shaped by mechanical coupling between stereocilia in the hair bundle of each hair cell. Here, we provide foundational information on the mechanical coupling between stereocilia of cochlear inner-hair cells. In contrast to other types of hair cell, coupling between inner-hair-cell stereocilia is weak, causing slower, smaller, and less sensitive receptor currents in response to stimulation of few, rather than many, stereocilia. Our results imply that inner-hair cells need many stereocilia to be stimulated in vivo to ensure fast, large, and sensitive receptor currents.


Asunto(s)
Células Ciliadas Vestibulares , Estereocilios , Ratas , Femenino , Masculino , Animales , Estereocilios/metabolismo , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mamíferos
2.
Elife ; 112022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36255054

RESUMEN

Mammalian carotid body arterial chemoreceptors function as an early warning system for hypoxia, triggering acute life-saving arousal and cardiorespiratory reflexes. To serve this role, carotid body glomus cells are highly sensitive to decreases in oxygen availability. While the mitochondria and plasma membrane signaling proteins have been implicated in oxygen sensing by glomus cells, the mechanism underlying their mitochondrial sensitivity to hypoxia compared to other cells is unknown. Here, we identify HIGD1C, a novel hypoxia-inducible gene domain factor isoform, as an electron transport chain complex IV-interacting protein that is almost exclusively expressed in the carotid body and is therefore not generally necessary for mitochondrial function. Importantly, HIGD1C is required for carotid body oxygen sensing and enhances complex IV sensitivity to hypoxia. Thus, we propose that HIGD1C promotes exquisite oxygen sensing by the carotid body, illustrating how specialized mitochondria can be used as sentinels of metabolic stress to elicit essential adaptive behaviors.


Asunto(s)
Cuerpo Carotídeo , Animales , Oxígeno/metabolismo , Células Quimiorreceptoras/metabolismo , Mitocondrias/metabolismo , Hipoxia/metabolismo , Mamíferos/metabolismo
3.
Front Cell Dev Biol ; 9: 725101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513845

RESUMEN

Hair cell mechanosensitivity resides in the sensory hair bundle, an apical protrusion of actin-filled stereocilia arranged in a staircase pattern. Hair bundle deflection activates mechano-electric transduction (MET) ion channels located near the tops of the shorter rows of stereocilia. The elicited macroscopic current is shaped by the hair bundle motion so that the mode of stimulation greatly influences the cell's output. We present data quantifying the displacement of the whole outer hair cell bundle using high-speed imaging when stimulated with a fluid jet. We find a spatially non-uniform stimulation that results in splaying, where the hair bundle expands apart. Based on modeling, the splaying is predominantly due to fluid dynamics with a small contribution from hair bundle architecture. Additionally, in response to stimulation, the hair bundle exhibited a rapid motion followed by a slower motion in the same direction (creep) that is described by a double exponential process. The creep is consistent with originating from a linear passive system that can be modeled using two viscoelastic processes. These viscoelastic mechanisms are integral to describing the mechanics of the mammalian hair bundle.

4.
Pflugers Arch ; 467(1): 73-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25241775

RESUMEN

Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s when direct mechanical gating of a transduction channel was proposed (Corey and Hudspeth J Neurosci 3:962-976, 1983). To this day, the molecular identity of this channel remains controversial. However, many of the hcMET channel's properties have been characterized, including pore properties, calcium-dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mecanotransducción Celular/fisiología , Animales , Canales de Calcio/química , Humanos , Activación del Canal Iónico/fisiología , Modelos Biológicos , Presión
5.
Biol Bull ; 227(1): 51-60, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25216502

RESUMEN

Squid are a significant component of the marine biomass and are a long-established model organism in experimental neurophysiology. The squid statocyst senses linear and angular acceleration and is the best candidate for mediating squid auditory responses, but its physiology and morphology are rarely studied. The statocyst contains mechano-sensitive hair cells that resemble hair cells in the vestibular and auditory systems of other animals. We examined whether squid statocyst hair cells are sensitive to aminoglycosides, a group of antibiotics that are ototoxic in fish, birds, and mammals. To assess aminoglycoside-induced damage, we used immunofluorescent methods to image the major cell types in the statocyst of longfin squid (Doryteuthis pealeii). Statocysts of live, anesthetized squid were injected with either a buffered saline solution or neomycin at concentrations ranging from 0.05 to 3.0 mmol l(-1). The statocyst hair cells of the macula statica princeps were examined 5 h post-treatment. Anti-acetylated tubulin staining showed no morphological differences between the hair cells of saline-injected and non-injected statocysts. The hair cell bundles of the macula statica princeps in aminoglycoside-injected statocysts were either missing or damaged, with the amount of damage being dose-dependent. The proportion of missing hair cells did not increase at the same rate as damaged cells, suggesting that neomycin treatment affects hair cells in a nonlethal manner. These experiments provide a reliable method for imaging squid hair cells. Further, aminoglycosides can be used to induce hair cell damage in a primary sensory area of the statocyst of squid. Such results support further studies on loss of hearing and balance in squid.


Asunto(s)
Antibacterianos/toxicidad , Decapodiformes/efectos de los fármacos , Neomicina/toxicidad , Animales , Inmunohistoquímica , Células Neuroepiteliales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...