Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405618, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869230

RESUMEN

Azobenzenes (ABs) are versatile compounds featured in numerous applications for energy storage systems, such as solar thermal storages or phase change materials. Additionally, the reversible one-electron reduction of these diazenes to the nitrogen-based anion radical has been used in battery applications. Although the oxidation of ABs is normally irreversible, 4,4'-diamino substitution allows a reversible 2e- oxidation, which is attributed to the formation of a stable bis-quinoidal structure. Herein, we present a system that shows a bipolar redox behaviour. In this way, ABs can serve not only as anolytes, but also as catholytes. The resulting redox potentials can be tailored by suitable amine- and ring-substitution. For the first time, the solid-state structure of the oxidized form could be characterized by X-ray diffraction.

2.
Chem Commun (Camb) ; 60(22): 3055-3058, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38381535

RESUMEN

Meta[n]cycloparaphenylenes (m[n]CPPs) as well as N-heterocyclic carbene (NHC) gold(I)-complexes are intriguing building blocks for material and life sciences due to their extraordinary structures resulting in unique photophysical properties. Herein, we report the combination of a m[6]CPP with a N-heterocyclic carbene serving as a ligand in a linear gold(I)-complex possessing the form [AuBr(NHC)]. Solid-state structures of both the precursor and the complex are presented and discussed. Moreover, we investigated the luminescence properties of both the imidazolium intermediate and the corresponding gold(I)-complex.

3.
Acc Chem Res ; 57(2): 257-266, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38131644

RESUMEN

ConspectusThe experimental quantification of interactions on the molecular level provides the necessary basis for the design of functional materials and chemical processes. The interplay of multiple parameters and the small quantity of individual interactions pose a special challenge for such endeavors. The common method is the use of molecular balances, which can exist in two different states. Thereby, a stabilizing interaction can occur in one of the states, favoring its formation and thus affecting the thermodynamic equilibrium of the system. One challenge is determining the change in this equilibrium since various analytical methods could not be applied to fast-changing equilibria. A new and promising method for quantifying molecular interactions is the use of Molecular Wind-up Meters (MWM) in which the change in kinetics, rather than the effect on thermodynamics, is investigated. An MWM is transformed with an energy input (e.g. irradiation) into a metastable state. Then, the rate of thermal transformation back to the ground state is measured. The strength of interactions present in the metastable state controls the kinetics of the back reactions, allowing direct correlation. The advantage of this approach lies in the high sensitivity (energy differences can be larger by 1 order of magnitude) and, in general, allows the use of a broader range of solvents and analytical methods. An Azobenzene-based MWM has been established as a powerful tool to quantify London dispersion interactions. London dispersion (LD) represents the attractive part of the van der Waals potential. Although neglected in the past due to its weak character, it has been shown that the influence of LD on the structure, stability, and reactivity of matter can be decisive. Especially in larger molecules, its energy contribution increases overproportionately with the number of atoms, which has sparked increasing interest in the use of so-called dispersion energy donors (DED) as a new structural element. Application of the azobenzene-based MWM not only allowed the differentiation of bulkiness, but also systematically addressed the influence of the length of n-alkyl chains. Additionally, the solvent influence on LD was studied. Based on the azobenzene MWM, an increment system has been proposed, allowing a rough estimate of the effect of a specific DED.

4.
Chemistry ; 28(12): e202104284, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35025129

RESUMEN

Predictive models based on incremental systems exist for many chemical phenomena, thus allowing easy estimates. Despite their low magnitude in isolated systems London dispersion interactions are ubiquitous in manifold situations ranging from solvation to catalysis or in biological systems. Based on our azobenzene system, we systematically determined the London dispersion donor strength of the alkyl substituents Me, Et, iPr up to tBu. Based on this data, we were able to implement an incremental system for London dispersion for the azobenzene scheme. We propose an equation that allows the prediction of the effect of change of substituents on London dispersion interactions in azobenzenes, which has to be validated in similar molecular arrangements in the future.


Asunto(s)
Compuestos Azo , Compuestos Azo/química , Fenómenos Químicos , Londres , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...