Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Environ Qual ; 53(3): 352-364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469617

RESUMEN

Historical applications of manures and fertilizers at rates exceeding crop P removal in the Mid-Atlantic region (United States) have resulted in decades of increased water quality degradation from P losses in agricultural runoff. As such, many growers in this region face restrictions on future P applications. An improved understanding of the fate, transformations, and availability of P is needed to manage P-enriched soils. We paired chemical extractions (i.e., Mehlich-3, water extractable P, and chemical fractionation) with nondestructive methods (i.e., x-ray absorption near edge structure [XANES] spectroscopy and x-ray fluorescence [XRF]) to investigate P dynamics in eight P-enriched Mid-Atlantic soils with various management histories. Chemical fractionation and XRF data were used to support XANES linear combination fits, allowing for identification of various Al, Ca, and Fe phosphates and P sorbed phases in soils amended with fertilizer, poultry litter, or dairy manure. Management history and P speciation were used to make qualitative comparisons between the eight legacy P soils; we also speculate about how P speciation may affect future management of these soils with and without additional P applications. With continued P applications, we expect an increase in semicrystalline Al and Fe-P, P sorbed to Al (hydro)oxides, and insoluble Ca-P species in these soils for all P sources. Under drawdown scenarios, we expect plant P uptake first from semicrystalline Al and Fe phosphates followed by P sorbed phases. Our results can help guide management decisions on coastal plain soils with a history of P application.


Asunto(s)
Fertilizantes , Estiércol , Fósforo , Suelo , Fertilizantes/análisis , Estiércol/análisis , Fósforo/análisis , Suelo/química , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Agricultura/métodos , Mid-Atlantic Region
2.
J Hazard Mater ; 469: 133948, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493633

RESUMEN

Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Cadmio , Antimonio , Plomo , Oro , Arena , Disponibilidad Biológica , Contaminantes del Suelo/análisis , Australia , Suelo , Minería
3.
Environ Pollut ; 341: 122881, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935301

RESUMEN

In this study, smelter contaminated soil was treated with various soil amendments (ferric sulfate [Fe2(SO4)3], triple superphosphate [TSP] and biochar) to determine their efficacy in immobilizing soil lead (Pb) and arsenic (As). In soils incubated with ferric sulfate (0.6M), gastric phase Pb bioaccessibility was reduced from 1939 ± 17 mg kg-1 to 245 ± 4.7 mg kg-1, while intestinal phase bioaccessibility was reduced from 194 ± 25 mg kg-1 to 11.9 ± 3.5 mg kg-1, driven by the formation of plumbojarosite. In TSP treated soils, there were minor reductions in gastric phase Pb bioaccessibility (to 1631 ± 14 mg kg-1) at the highest TSP concentration (6000 mg kg-1) although greater reductions were observed in the intestinal phase, with bioaccessibility reduced to 9.3 ± 2.2 mg kg-1. Speciation analysis showed that this was primarily driven by the formation of chloropyromorphite in the intestinal phase following Pb and phosphate solubilization in the low pH gastric fluid. At the highest concentration (10% w/w), biochar treated soils showed negligible decreases in Pb bioaccessibility in both gastric and intestinal phases. Validation of bioaccessibility outcomes using an in vivo mouse assay led to similar results, with treatment effect ratios (TER) of 0.20 ± 0.01, 0.76 ± 0.11 and 1.03 ± 0.10 for ferric sulfate (0.6M), TSP (6000 mg kg-1) and biochar (10% w/w) treatments. Results of in vitro and in vivo assays showed that only ferric sulfate treatments were able to significantly reduce As bioaccessibility and bioavailability with TER at the highest application of 0.06 ± 0.00 and 0.14 ± 0.04 respectively. This study highlights the potential application of ferric sulfate treatment for the immobilization of Pb and As in co-contaminated soils.


Asunto(s)
Arsénico , Contaminantes del Suelo , Animales , Ratones , Arsénico/análisis , Plomo , Suelo , Disponibilidad Biológica , Contaminantes del Suelo/análisis , Resultado del Tratamiento
4.
Proc Natl Acad Sci U S A ; 120(50): e2311564120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048468

RESUMEN

Soils are common sources of metal(loid) contaminant exposure globally. Lead (Pb) and arsenic (As) are of paramount concern due to detrimental neurological and carcinogenic health effects, respectively. Pb and/or As contaminated soils require remediation, typically leading to excavation, a costly and environmentally damaging practice of removing soil to a central location (e.g., hazardous landfill) that may not be a viable option in low-income countries. Chemical remediation techniques may allow for in situ conversion of soil contaminants to phases that are not easily mobilized upon ingestion; however, effective chemical remediation options are limited. Here, we have successfully tested a soil remediation technology using potted soils that relies on converting soil Pb and As into jarosite-group minerals, such as plumbojarosite (PLJ) and beudantite, possessing exceptionally low bioaccessibility [i.e., solubility at gastric pH conditions (pH 1.5 to 3)]. Across all experiments conducted, all new treatment methods successfully promoted PLJ and/or beudantite conversion, resulting in a proportional decrease in Pb and As bioaccessibility. Increasing temperature resulted in increased conversion to jarosite-group minerals, but addition of potassium (K) jarosite was most critical to Pb and As bioaccessibility decreases. Our methods of K-jarosite treatment yielded <10% Pb and As bioaccessibility compared to unamended soil values of approximately 70% and 60%, respectively. The proposed treatment is a rare dual remediation option that effectively treats soil Pb and As such that potential exposure is considerably reduced. Research presented here lays the foundation for ongoing field application.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Potasio , Suelo , Plomo , Contaminantes del Suelo/análisis , Minerales , Disponibilidad Biológica
5.
Geochim Cosmochim Acta ; 350: 46-56, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37469621

RESUMEN

Green rusts (GR) are important drivers for trace metal and nutrient cycling in suboxic environments. We investigated whether green rusts would incorporate aluminum (Al) or other elements from naturally-formed clay minerals containing easily-weatherable clay minerals (e.g. mica, interlayered clays). We isolated the clay minerals from a Matapeake silt loam soil by removal of silt and sand, organic matter, and reducible oxides to study mechanisms of interaction between Fe(II) and soil-sourced clay minerals. We conducted batch Fe(II) sorption experiments at multiple near-neutral pHs (6.5-7.5) and reaction times (2 h-365 days). Mineral transformations were characterized by selective extractions, X-ray diffraction (XRD), and Fe X-ray absorption spectroscopy (XAS) analyzed by shell-fitting and linear combination fitting (LCF) with natural and synthetic standards. Clay mineral fraction contained a mixture of quartz, kaolinite, interlayered vermiculite, mica, and chlorite with significant structural Fe (2.6% wt). Uptake of Fe(II) increased with pH and kinetics were rapid until 5 days, followed by slow continuous Fe(II) uptake. Citrate-bicarbonate desorption kinetics from Fe(II) sorbed clay released more Al and silicon (Si) compared with unreacted soil clay fraction whereas magnesium (Mg) and potassium (K) were unaffected. Citrate-bicarbonate extracted Fe contained more Fe(II) than an ideal GR with an Fe(II)/Fe(III) molar ratio of 5.50. Analysis of the Fe EXAFS by both LCF and shell fitting was best modeled as a combination of Fe(III)-clay reduction to Fe(II) and precipitation of GR and Fe(II)-Al LDH. After 7 days of Fe(II) sorption, LCF identified 55.2% total Fe in clay, 33.4% GR(Cl) and 11.4% Fe(II)-Al LDH. These results provide novel evidence of Fe(II)-Al LDHs precipitating on naturally-formed soil clay minerals as a minor phase to GR. The geochemical implications are that GRs formed in soils and sediments should be considered to have Al and Si as well as Mg substitutions affecting their structure and reactivity.

6.
Environ Health Perspect ; 130(12): 127004, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541774

RESUMEN

BACKGROUND: Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES: This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS: A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO4, CaCO3, Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200-5,000µg/g Ca. The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25(OH)2D3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS: In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO4. In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO4. In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION: Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.


Asunto(s)
Arsénico , Cadmio , Animales , Ratones , Humanos , Disponibilidad Biológica , Polvo , Plomo , Minerales , Gluconatos , Citratos , ARN Mensajero
7.
Environ Sci Technol ; 56(22): 15718-15727, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239028

RESUMEN

Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95-100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. µ-X-ray fluorescence (µ-XRF) and µ-X-ray absorption near-edge structure (µ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.


Asunto(s)
Contaminantes del Suelo , Contaminantes del Suelo/química , Plomo/análisis , Potasio/análisis , Temperatura , Suelo/química , Disponibilidad Biológica , Minerales/química
8.
Sci Total Environ ; 837: 155797, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561906

RESUMEN

The relationship between ingestion of diets amended with a Pb-contaminated soil and the composition of the fecal microbiome was examined in a mouse model. Mice consumed diets amended with a Pb-contaminated soil in its native (untreated) state or after treatment for remediation with phosphoric acid or triple superphosphate alone or in combination with iron-waste material or biosolids compost. Subacute dietary exposure of mice receiving treated soil resulted in modulation of the fecal intestinal flora, which coincided with reduced relative Pb bioavailability in the bone, blood and kidney and differences in Pb speciation compared to untreated soil. Shifts in the relative abundance of several phyla including Verrucomicrobia, Tenericutes, Firmicutes, Proteobacteria, and TM7 (Candidatus Saccharibacteria) were observed. Because the phyla persist in the presence of Pb, it is probable that they are resistant to Pb. This may enable members of the phyla to bind and limit Pb uptake in the intestine. Families Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, Verrucomicrobiaceae, Prevotellaceae, Lactobacilaceae, and Bacteroidaceae, which have been linked to health or disease, also were modulated. This study is the first to explore the relationship between the murine fecal microbiome and ingested Pb contaminated soils treated with different remediation options designed to reduce bioavailability. Identifying commonalities in the microbiome that are correlated with more positive health outcomes may serve as biomarkers to assist in the selection of remediation approaches that are more effective and pose less risk.


Asunto(s)
Microbiota , Contaminantes del Suelo , Animales , Disponibilidad Biológica , Ingestión de Alimentos , Plomo/toxicidad , Ratones , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
9.
Front Soil Sci ; 2: 1-14, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36733849

RESUMEN

Measuring the reduction of in vitro bioaccessible (IVBA) Pb from the addition of phosphate amendments has been researched for more than 20 years. A range of effects have been observed from increases in IVBA Pb to almost 100% reduction. This study determined the mean change in IVBA Pb as a fraction of total Pb (AC) and relative to the IVBA Pb of the control soil (RC) with a random effects meta-analysis. Forty-four studies that investigated the ability of inorganic phosphate amendments to reduce IVBA Pb were identified through 5 databases. These studies were split into 3 groups: primary, secondary, and EPA Method 1340 based on selection criteria, with the primary group being utilized for subgroup analysis and meta-regression. The mean AC was approximately -12% and mean RC was approximately -25% for the primary and secondary groups. For the EPA Method 1340 group, the mean AC was -5% and mean RC was -8%. The results of subgroup analysis identified the phosphorous amendment applied and contamination source as having a significant effect on the AC and RC. Soluble amendments reduce bioaccessible Pb more than insoluble amendments and phosphoric acid is more effective than other phosphate amendments. Urban Pb contamination associated with legacy Pb-paint and tetraethyl Pb from gasoline showed lower reductions than other sources such as shooting ranges and smelting operations. Meta-regression identified high IVBA Pb in the control, low incubated soil pH, and high total Pb with the greater reductions in AC and RC. In order to facilitate comparisons across future remediation research, a set of minimum reported data should be included in published studies and researchers should use standardized in vitro bioaccessibility methods developed for P-treated soils. Additionally, a shared data repository should be created for soil remediation research to enhance available soil property information and better identify unique materials.

10.
Environ Sci Technol ; 55(23): 15950-15960, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806356

RESUMEN

Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.


Asunto(s)
Contaminantes del Suelo , Suelo , Animales , Disponibilidad Biológica , Contaminación Ambiental , Ratones , Contaminantes del Suelo/análisis , Espectroscopía de Absorción de Rayos X
11.
Environ Health Perspect ; 129(11): 117004, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34766834

RESUMEN

BACKGROUND: Emerging evidence suggests social, health, environmental, and economic benefits of urban agriculture (UA). However, limited work has characterized the risks from metal contaminant exposures faced by urban growers and consumers of urban-grown produce. OBJECTIVES: We aimed to answer community-driven questions about the safety of UA and the consumption of urban-grown produce by measuring concentrations of nine metals in the soil, irrigation water, and urban-grown produce across urban farms and gardens in Baltimore, Maryland. METHODS: We measured concentrations of 6 nonessential [arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni)] and three essential [copper (Cu), manganese (Mn), zinc (Zn)] metals in soil, irrigation water, and 13 types of urban-grown produce collected from 104 UA sites. We compared measured concentrations to existing public health guidelines and analyzed relationships between urban soil and produce concentrations. In the absence of guidelines for metals in produce, we compared metals concentrations in urban-grown produce with those in produce purchased from farmers markets and grocery stores (both conventionally grown and U.S. Department of Agriculture-certified organic). RESULTS: Mean concentrations of all measured metals in irrigation water were below public health guidelines. Mean concentrations of nonessential metals in growing area soils were below public health guidelines for Ba, Cd, Pb, and Ni and at or below background for As and Cr. Though we observed a few statistically significant differences in concentrations between urban and nonurban produce items for some combinations, no consistent or discernable patterns emerged. DISCUSSION: Screening soils for heavy metals is a critical best practice for urban growers. Given limitations in existing public health guidelines for metals in soil, irrigation water, and produce, additional exposure assessment is necessary to quantify potential human health risks associated with exposure to nonessential metals when engaging in UA and consuming urban-grown produce. Conversely, the potential health benefits of consuming essential metals in urban-grown produce also merit further research. https://doi.org/10.1289/EHP9431.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Baltimore , Estudios Transversales , Monitoreo del Ambiente , Granjas , Jardines , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Agua
12.
J Hazard Mater ; 418: 126312, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329036

RESUMEN

In this study, a novel method for lead (Pb) immobilization was developed in contaminated soils using iron (III) (Fe3+) in conjunction with 0.05 M H2SO4. During method optimization, a range of microwave treatment times, solid to solution ratios, and Fe2(SO4)3/H2SO4 concentrations were assessed using a mining/smelting impacted soil (BHK2, Pb: 3031 mg/kg), followed by treatment of additional Pb contaminated soils (PP, Pb: 1506 mg/kg, G10, Pb: 2454 mg/kg and SoFC-1, Pb: 6340 mg/kg) using the optimized method. Pb bioaccessibility was assessed using USEPA Method 1340, with Pb speciation determined by X-ray Absorption (XAS) spectroscopy. Treatment efficacy was also validated using an in vivo mouse assay, where Pb accumulation in femur, kidney and liver was assessed to confirm in vitro bioaccessibility outcomes. Results showed that Pb bioaccessibility could be reduced by 77.4-97.0% following treatment of soil with Fe2(SO4)3 (0.4-1.0 M), H2SO4 (0.05 M) at 150 °C for 60 min in a closed microwave system. Results of bioavailability assessment demonstrated treatment effect ratio of 0.06-0.07 in femur, 0.06-0.27 in kidney and 0.06-0.11 in liver (bioavailability reduction between 73% and 93%). Formation of plumbojarosite in treated soils was confirmed by XAS analysis.


Asunto(s)
Arsénico , Contaminantes del Suelo , Animales , Antimonio , Niño , Humanos , Plomo/análisis , Ratones , Suelo , Contaminantes del Suelo/análisis
13.
Sci Total Environ ; 770: 145354, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736407

RESUMEN

The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg-1). The Sb mobility decreased with ageing as highlighted by sequential extraction, while its residual fraction significantly increased. The concentration of Sb (CDGT), as determined by diffusive gradients in thin films (DGT), showed a reduction in potential contaminant bioavailability during ageing. The DGT analysis also showed that Sb-CDGT after 700 days ageing was significantly higher in S1-1000 compared to S2-1000, suggesting soil pH plays a key role in Sb potential bioavailability. In-vitro tests also revealed that Sb bioaccessibility (and Hazard Quotient) decreased over time. Linear combination fitting of Sb K-edge XANES derivative spectra showed, as a general trend, an increase in Sb(V) sorption to inorganic oxides with ageing as well as Sb(V) bound to organic matter (e.g. up to 27 and 37% respectively for S2-100). The results indicated that ageing can alleviate Sb ecotoxicity in soil and that the effectiveness of such processes can be increased at acidic pH. However, substantial risks due to Sb mobility, potential bioavailability and bioaccessibility remained in contaminated soils even after 700 days ageing.


Asunto(s)
Antimonio , Contaminantes del Suelo , Antimonio/análisis , Disponibilidad Biológica , Contaminación Ambiental/análisis , Suelo , Contaminantes del Suelo/análisis
14.
Environ Sci Process Impacts ; 23(2): 367-380, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33527965

RESUMEN

Mining companies used to abandon tailing heaps in countryside regions of Mexico and other countries. Mine residues (MRs) contain a high concentration of potentially toxic elements (PTE). The wind can disperse dust particles (<100 µm) and once suspended in the atmosphere, can be ingested or inhaled; this is a common situation in arid climates. Nowadays, there is little information on the risk of exposure to PTEs from particulate matter dispersed by wind. The pseudo-total PTE in bulk and fractionated MR after aqua regia digestion, the inhalable bioaccessibility with Gamble solution (pH = 7.4), and the gastric bioaccessibility with 0.4 M glycine solution at pH 1.5 were determined. As and Pb chemical species were identified by X-ray absorption near-edge structure (XANES) spectroscopy. The highest rate of dispersion was observed with 74-100 µm particles (104 mg m-2 s-1); in contrast, particles <44 µm had the lowest rate (26 mg m-2 s-1). The highest pseudo-total As (35 961 mg kg-1), Pb (3326 mg kg-1), Cd (44 mg kg-1) and Zn (up to 4678 mg kg-1) concentration was in the <20 µm particles and As in the 50-74 µm (40 236 mg kg-1) particles. The highest concentration of inhaled bioaccessible As (343 mg kg-1) was observed in the <20 µm fraction and the gastric bioaccessible As was 744 mg kg-1, Pb was 1396 mg kg-1, Cd was 19.2 mg kg-1, and Zn was 2048 mg kg-1. The predominant chemical As species was arsenopyrite (92%), while 54% of Pb was in the adsorbed form. Erodible particle matter is a potential risk for humans in case of inhalation or ingestion.


Asunto(s)
Contaminantes del Suelo , Clima Desértico , Polvo/análisis , Monitoreo del Ambiente , Humanos , Minería , Material Particulado/análisis , Material Particulado/toxicidad , Contaminantes del Suelo/análisis
15.
Chem Eng J ; 4052021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33424420

RESUMEN

Metal-free electrocatalysts have been widely used as cathodes for the reduction of hexavalent chromium [Cr(VI)] in microbial fuel cells (MFCs). The electrocatalytic activity of such system needs to be increased due to the low anodic potential provided by bacteria. In this study, graphite paper (GP) was treated by liquid nitrogen to form three-dimensional graphite foam (3DGF), improving the Cr(VI) reduction by 17% and the total Cr removal by 81% at 30 h in MFCs. X-ray absorption spectroscopy confirmed the Cr(VI) reduction product as Cr(OH)3. Through the spectroscopy characterizations, electrochemical measurements, and density functional theory calculations, the porous structures, edges, and O-doped defects on the 3DGF surface resulted in a higher electroconducting rate and a lower mass transfer rate, which provide more active sites for the Cr(VI) reduction. Additionally, the scrolled graphene-like carbon nanosheets and porous structures on the 3DGF surface might limit the OH- diffusion and result in a high local pH, which accelerated the Cr(OH)3 formation. The results of this study are expected to provide a simple method to manipulate the carbon materials and insights into mechanisms of Cr(VI) reduction in MFCs by the 3DGF with in situ exfoliated edges and O-functionalized graphene.

16.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431689

RESUMEN

Exposure to lead (Pb) during early life has persistent adverse health effects. During childhood, ingestion of bioavailable Pb in contaminated soils can be a major route of Pb absorption. Remediation to alter physiochemical properties of soil-borne Pb can reduce Pb bioavailability. Our laboratory-based approach for soil Pb remediation uses addition of iron (Fe) sulfate and application of heat to promote formation of plumbojarosite (PLJ), a sparingly soluble Pb-Fe hydroxysulfate mineral. We treated two soils with anthropogenic Pb contamination and samples of clean topsoil spiked with various Pb compounds (i.e., carbonate, chloride, phosphate [P], or sulfate) to convert native Pb species to PLJ and used a mouse assay to assess relative bioavailability (RBA) of Pb in untreated (U) and remediated soils. Bone and blood Pb levels were significantly lower (P < 0.001, Student's t test) in mice that consumed diets amended with remediated soils than with U soils. Estimated RBA for Pb in both remediated natural soils and Pb-mineral spiked soils were reduced by >90% relative to Pb RBA for U soils, which is substantially more effective than other soil amendments, including P. X-ray absorption spectroscopy showed that >90% of all Pb species in remediated soils were converted to PLJ, and ingested PLJ was not chemically transformed during gastrointestinal tract transit. Post treatment neutralization of soil pH did not affect PLJ stability, indicating the feasibility in field conditions. These results suggest that formation of PLJ in contaminated soils can reduce the RBA of Pb and minimize this medium's role as a source of Pb exposure for young children.


Asunto(s)
Biodegradación Ambiental , Tracto Gastrointestinal/efectos de los fármacos , Hierro/química , Plomo/toxicidad , Contaminantes del Suelo/química , Animales , Disponibilidad Biológica , Contaminación Ambiental , Humanos , Plomo/química , Ratones , Minerales/química , Fosfatos/química , Suelo/química , Contaminantes del Suelo/toxicidad , Sulfatos/química , Espectroscopía de Absorción de Rayos X
17.
Biochar ; 3: 457-468, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35059562

RESUMEN

Biochars, when applied to contaminated solutions or soils, may sequester potentially toxic elements while releasing necessary plant nutrients. This purpose of this study focused on quantifying both phenomenon following wheat straw (Triticum aestivum L.) biochar application (0, 5, and 15% by wt) to a Cd containing solution and a Cd-contaminated paddy soil using 240-day laboratory batch experiments. Following both experiments, solid phases were analyzed for elemental associations using a combination of wet chemical sequential extractions and synchrotron-based X-ray absorption spectroscopy (XAS). When wheat straw biochar was applied at 15% to Cd containing solutions, Cd and Zn concentrations decreased to below detection in some instances, Ca and Mg concentrations increased by up to 290%, and solution pH increased as compared to the 5% biochar application rate. Similar responses were observed when biochar was added to the Cd-contaminated paddy soil, suggesting that this particular biochar has the ability to sequester potentially toxic elements while releasing necessary plant nutrients to the soil solution. When significant, positive correlations existed between nutrient release over time, while negative correlations were present between biochar application rate, potentially toxic element sorption and pH. The latter suggests that potentially toxic elements were sorbed by a combination of organic functional groups or mineral precipitation based on whether pH was above or below ~ 7. In support of this contention, the wet chemical sequential extraction procedure in conjunction with previously observed Cd or current Zn XAS showed that biochar application promoted the formation of layered double hydroxides, sorption to (oxy)hydroxides, and organically bound to biochar as Zn species. As a multifunctional material, biochar appears to play an important role in sequestering Cd while releasing essential plant nutrients. These findings suggest that biochar may be a 'win-win' for improving environmental quality in potentially toxic element contaminated agroecosystems.

18.
Environ Sci Technol ; 55(1): 402-411, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33307690

RESUMEN

House dust and soils can be major sources of lead (Pb) exposure for children. The American Healthy Homes Survey (AHHS) was developed to estimate Pb exposure from house dust and soil, in addition to other potential household contaminants and allergens. We have combined X-ray absorption spectroscopic (XAS) fingerprinting and in vivo mouse relative bioavailability (RBA) measurements for a subset of house dust and residential soils collected in the AHHS, with the primary objective of gaining a better understanding of determinants of house dust Pb bioavailability. Lead speciation was well related to variations in RBA results and revealed that highly bioavailable Pb (hydroxy)carbonate (indicative of Pb-based paint) was the major Pb species present in house dusts. Measured Pb RBA was up to 100% and is likely driven by paint Pb. To our knowledge, this is the first report of in vivo Pb RBA for U.S. house dust contaminated in situ with paint Pb and corroborates results from a previous study that demonstrated high RBA of paint Pb added to soil. We also report a relatively low RBA (23%) in a residential soil where the major Pb species was found to be plumbojarosite, consistent with a previous report that plumbojarosite lowers Pb RBA in soils.


Asunto(s)
Polvo , Contaminantes del Suelo , Animales , Disponibilidad Biológica , Polvo/análisis , Ratones , Pintura , Suelo , Contaminantes del Suelo/análisis
19.
J Environ Qual ; 49(6): 1667-1678, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33107090

RESUMEN

Atmospheric deposition samples were collected over 15 mo at several locations near an operating smelter and an abandoned Pb smelter to investigate the contribution of Pb smelting to depositional fluxes and potential local air quality degradation. Samples were analyzed for As, Cd, Cu, Pb, and Zn and subjected to scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS). Concentrations of Cd and Pb at both sites were greater than at the control site (p < .05), and significant correlations existed between Cd and Pb concentrations at both sites (p < .05). Monthly depositional flux variations at both sites were similar, with greater deposition during cold and dry periods. Heavy metal(loid)s deposition during these periods was correlated with wind speed. Greater Cd depositional flux differences were found between the smelter and control sites compared with other elements. The SEM images suggested that some particles at the operating smelter site were from Pb smelting material. However, most particles at both sites had no characteristics of smelting, suggesting reactions occurred between the smelter-emitted particles and soil components. The EDS results indicated that atmospheric deposition from both sites had lower Pb concentrations than smelting material or ash. The main atmospheric deposition source at the operating and abandoned sites was likely from the resuspension of heavy metal(loid)-enriched soil particles. Greater risk of air pollution from historical Pb smelting facilities exists years after closing down. Reducing soil wind erosional losses may help reduce heavy metal(loid)s dispersion across environments.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Cadmio , China , Cobre/análisis , Monitoreo del Ambiente , Plomo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Zinc/análisis
20.
Environ Pollut ; 266(Pt 2): 115110, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32622007

RESUMEN

Windowsill, heavy metal-containing dust samples, collected at different building heights, may provide some insight into both source and human health risk. Windowsill dust samples were collected from the 1st to 9th floor (1.4-23.2 m above ground) near a lead smelter (1 km to the smelter) and in urban areas (4.2-7.3 km to the smelter) and separated into <10, 10-45 and 45-125 µm size fractions. Samples were extracted with artificial lysosomal fluid (ALF) and the physiologically based extraction test (PBET) (<10 µm fractions only), subjected to scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) and Pb isotopic analysis. Greater Pb concentrations were found in 10-45 µm fraction than the other size fractions; at the PX site, dust Pb concentrations increased with windowsill height, while an opposite trend was found at other sites. Isotopic analysis and SEM-EDS results supported this contention. Higher floor samples collected near the smelter were more affected by lead smelting than lower floor samples; lower floor samples collected at urban sites were more affected by resuspended Pb-laden particles from the ground than higher floors. The Pb bioaccessible fraction (BAF) in the ALF and PBET ranged between 68.9-90.1 and 1.3-17.0%, respectively; urban samples had greater BAF values than samples collected near the smelter. This, first of its kind investigation regarding Pb in dusts at different building heights, provides further insight for reducing human health risks within Pb smelter vicinities.


Asunto(s)
Polvo/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Humanos , Plomo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...