Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 15: 360-366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590428

RESUMEN

We present a novel method combining anodic aluminum oxide template synthesis and nanolithography to selectively deposit vertically patterned magnetic nanowires on a Si substrate. With this approach we fabricated three-dimensional nanowire-based spin valve devices without the need of complex etching processes or additional spacer coating. Through this method, we successfully obtained NiCu/Cu multilayered nanowire arrays with a controlled sequence along the long axis of the nanowires. Both magnetic switching and excitation phenomena driven by spin-polarized currents were clearly demonstrated in our NiCu/Cu multilayered nanowires. Moreover, the critical currents for switching and excitation were observed to be modulated in an oscillatory manner by the magnetic field in the nanowire-based devices. We present a toy model to qualitatively explain these observations.

2.
J Am Chem Soc ; 146(10): 6856-6865, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38413090

RESUMEN

A comprehensive understanding of carrier transport in photoisomeric molecular junctions is crucial for the rational design and delicate fabrication of single-molecule functional devices. It has been widely recognized that the conductance of azobenzene (a class of photoisomeric molecules) based molecular junctions is mainly determined by photoinduced conformational changes. In this study, it is demonstrated that the most probable conductance of amine-anchored azobenzene-based molecular junctions increases continuously upon UV irradiation. In contrast, the conductance of pyridyl-anchored molecular junctions with an identical azobenzene core exhibits a contrasting trend, highlighting the pivotal role that anchoring groups play, potentially overriding (even reversing) the effects of photoinduced conformational changes. It is further demonstrated that the molecule with cis-conformation cannot be fully mechanically stretched into the trans-conformation, clarifying that it is a great challenge to realize a reversible molecular switch by purely mechanical operation. Additionally, it is revealed that the coupling strength of pyridyl-anchored molecules is dramatically weakened when the UV irradiation time is prolonged, whereas it is not observed for amine-anchored molecules. The mechanisms for these observations are elucidated with the assistance of density functional theory calculations and UV-Vis spectra combined with flicker noise measurements which confirm the photoinduced conformational changes, providing insight into understanding the charge transport in photoisomeric molecular junctions and offering a routine for logical designing synchro opto-mechanical molecular switches.

3.
Phys Rev Lett ; 132(5): 057001, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364128

RESUMEN

We study the interplay between Coulomb blockade and superconductivity in a tunable superconductor-superconductor-normal-metal single-electron transistor. The device is realized by connecting the superconducting island via an oxide barrier to the normal-metal lead and with a break junction to the superconducting lead. The latter enables Cooper pair transport and (multiple) Andreev reflection. We show that these processes are relevant also far above the superconducting gap and that signatures of Coulomb blockade may reoccur at high bias while they are absent for small bias in the strong-coupling regime. Our experimental findings agree with simulations using a rate equation approach in combination with the full counting statistics of multiple Andreev reflection.

4.
ACS Omega ; 8(41): 38766-38772, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867726

RESUMEN

We have assembled 4,8,12-tri-n-octyl-4,8,12-triazatrianguleniumtetrafluoroborate (TATA-BF4) on highly oriented pyrolytic graphite (HOPG) and have studied the structure and tunneling properties of this self-assembled monolayer (SAM) using scanning tunneling microscopy (STM) under ambient conditions. We show that the triazatriangulenium cations TATA+ form hexagonally packed structures driven by the interaction between the aromatic core and the HOPG lattice, as evidenced by density functional theory (DFT) modeling. According to the DFT results, the three alkyl chains of the platform tend to follow the main crystallographic directions of HOPG, leading to a different STM appearance. The STM contrast of the SAM shows that the monolayer is formed by two types of species, namely, TATA+ with BF4- counterions on top and without them. The cationic TATA+ platform gives rise to a seemingly higher appearance than neutral TATA-BF4, in contrast to observations made on metallic substrates. The variation of the STM tunneling parameters does not change the relative difference of contrast, revealing the stability of both species on HOPG. DFT calculations show that TATA-BF4 on HOPG has sufficient binding energy to resist dissociation into TATA+ and BF4-, which might occur under the action of the electric field in the tunneling gap during STM scanning.

5.
J Phys Chem Lett ; 14(24): 5709-5717, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37318265

RESUMEN

The current-voltage characteristics of a single-molecule junction are determined by the electronic coupling Γ between the electronic states of the electrodes and the dominant transport channel(s) of the molecule. Γ is profoundly affected by the choice of the anchoring groups and their binding positions on the tip facets and the tip-tip separation. In this work, mechanically controllable break junction experiments on the N,N'-bis(5-ethynylbenzenethiol-salicylidene)ethylenediamine are presented, in particular, the stretch evolution of Γ with increasing tip-tip separation. The stretch evolution of Γ is characterized by recurring local maxima and can be related to the deformation of the molecule and sliding of the anchoring groups above the tip facets and along the tip edges. A dynamic simulation approach is implemented to model the stretch evolution of Γ, which captures the experimentally observed features remarkably well and establishes a link to the microscopic structure of the single-molecule junction.

6.
Nanoscale ; 15(24): 10277-10285, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37184489

RESUMEN

The coexistence of different properties in the same material often results in exciting physical effects. At low temperatures, the pyrite transition-metal disulphide NiS2 hosts both antiferromagnetic and weak ferromagnetic orders, along with surface metallicity dominating its electronic transport. The interplay between such a complex magnetic structure and surface-dominated conduction in NiS2, however, is still not understood. A possible reason for this limited understanding is that NiS2 has been available primarily in bulk single-crystal form, which makes it difficult to perform studies combining magnetometry and transport measurements with high spatial resolution. Here, NiS2 nanoflakes are produced via mechanical cleaving and exfoliation of NiS2 single crystals and their properties are studied on a local (micron-size) scale. Strongly field-asymmetric magnetotransport features are found at low temperatures, which resemble those of more complex magnetic thin film heterostructures. Using nitrogen vacancy magnetometry, these magnetotransport features are related to exchange-bias-type effects between ferromagnetic and antiferromagnetic regions forming near step edges at the nanoflake surface. Nanoflakes with bigger steps exhibit giant magnetoresistance, which suggests a strong influence of magnetic spin textures at the NiS2 surface on its electronic transport. These findings pave the way for the application of NiS2 nanoflakes in van der Waals heterostructures for low-temperature spintronics and superconducting spintronics.


Asunto(s)
Frío , Disulfuros , Transporte de Electrón , Imanes , Nitrógeno
7.
Small Methods ; 7(4): e2201427, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36732898

RESUMEN

The ability to precisely regulate the size of a nanogap is essential for establishing high-yield molecular junctions, and it is crucial for the control of optical signals in extreme optics. Although remarkable strategies for the fabrication of nanogaps are proposed, wafer-compatible nanogaps with freely adjustable gap sizes are not yet available. Herein, two approaches for constructing in situ adjustable metal gaps are proposed which allow Ångstrom modulation resolution by employing either a lateral expandable piezoelectric sheet or a stretchable membrane. These in situ adjustable nanogaps are further developed into in-plane molecular break junctions, in which the gaps can be repeatedly closed and opened thousands of times with self-assembled molecules. The conductance of the single 1,4-benzenediamine (BDA) and the BDA molecular dimer is successfully determined using the proposed strategy. The measured conductance agreeing well with the data by employing another well-established scanning tunneling microscopy break junction technique provides insight into the formation of molecule dimer via hydrogen bond at single molecule level. The wafer-compatible nanogaps and in-plane dynamical break-junctions provide a potential approach to fabricate highly compacted devices using a single molecule as a building block and supply a promising in-plane technique to address the dynamical properties of single molecules.

8.
Nanoscale Adv ; 4(2): 457-466, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132702

RESUMEN

We report on the first systematic transport study of alkynyl-ended oligophenyl-diethynyl (OPA) single-molecule junctions with direct Au-C anchoring scheme at low temperature using the mechanically controlled break junction technique. Through quantitative statistical analysis of opening traces, conductance histograms and density functional theory studies, we identified different types of junctions, classified by their conductance and stretching behavior, for OPA molecules between Au electrodes with two to four phenyl rings. We performed inelastic electron tunneling spectroscopy and observed the excitation of Au-C vibrational modes confirming the existence of Au-C bonds at low temperature and compared the stability of molecule junctions upon mechanical stretching. Our findings reveal the huge potential for future functional molecule transport studies at low temperature using alkynyl endgroups.

9.
Nano Lett ; 22(14): 5773-5779, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35849010

RESUMEN

We report transport measurements on tunable single-molecule junctions of the organic perchlorotrityl radical molecule, contacted with gold electrodes at low temperature. The current-voltage characteristics of a subset of junctions shows zero-bias anomalies due to the Kondo effect and in addition elevated magnetoresistance (MR). Junctions without Kondo resonance reveal a much stronger MR. Furthermore, we show that the amplitude of the MR can be tuned by mechanically stretching the junction. On the basis of these findings, we attribute the high MR to an interference effect involving spin-dependent scattering at the metal-molecule interface and assign the Kondo effect to the unpaired spin located in the center of the molecule in asymmetric junctions.

10.
Nat Rev Chem ; 6(10): 681-704, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37117494

RESUMEN

Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.

11.
Phys Rev Lett ; 127(18): 184301, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767395

RESUMEN

We investigate the sideband spectra of a driven nonlinear mode with its eigenfrequency being modulated at a low frequency (<1 kHz). This additional parametric modulation leads to prominent antiresonance line shapes in the sideband spectra, which can be controlled through the vibration state of the driven mode. We also establish a direct connection between the antiresonance frequency and the squeezing of thermal fluctuation in the system. Our Letter not only provides a simple and robust method for squeezing characterization, but also opens a new possibility toward sideband applications.

12.
Phys Rev Lett ; 127(1): 014304, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270281

RESUMEN

We study experimentally and theoretically the phenomenon of "persistent response" in ultrastrongly driven membrane resonators. The term persistent response denotes the development of a vibrating state with nearly constant amplitude over an extreme wide frequency range. We reveal the underlying mechanism by directly imaging the vibrational state using advanced optical interferometry. We argue that this state is related to the nonlinear interaction between higher-order flexural modes and higher-order overtones of the driven mode. Finally, we propose a stability diagram for the different vibrational states that the membrane can adopt.


Asunto(s)
Membranas/química , Modelos Químicos , Interferometría , Dinámicas no Lineales , Vibración
13.
Nanoscale ; 13(9): 4978-4984, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33634301

RESUMEN

We examined the modified electronic structure and single-carrier transport of individual hybrid core-shell metal-semiconductor Au-ZnS quantum dots (QDs) using a scanning tunnelling microscope. Nearly monodisperse ultra-small QDs are achieved by a facile wet chemical route. The exact energy structures are evaluated by scanning tunnelling spectroscopy (STS) measurements at 300 mK for the individual nanoobjects starting from the main building block Au nanocrystals (NCs) to the final Au-ZnS QDs. The study divulges the evolution of the energy structure and the charge transport from the single metallic building block core to the core-shell metal-semiconductor QDs. Furthermore, we successfully determined the contributions related to the quantum-confinement-induced excitonic band structure of the ZnS nano-shell and the charging energy of the system by applying a semi-empirical approach considering a double barrier tunnel junction (DBTJ) arrangement. We detect strong conductance peaks in Au-ZnS QDs due to the overlapping of the energy structure of the Au nano-core and the discrete energy states of the semiconductor ZnS nano-shell. Our findings will help in understanding the electronic properties of metal-semiconductor QDs. The outcomes therefore have the potential to fabricate tailored metal-semiconductor QDs for single-electron devices.

14.
Phys Chem Chem Phys ; 22(46): 26702-26706, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33216107

RESUMEN

Fitting the I/V curves of molecular junctions by simple analytical models is often done to extract relevant molecular parameters such as energy level alignment or interfacial electronic coupling to build up useful property-relationships. However, such models can suffer from severe limitations and hence provide unreliable molecular parameters. This is illustrated here by extracting key molecular parameters by fitting computed voltage-dependent transmission spectra and by comparing them to the values obtained by fitting the calculated I/V curves with a typical Lorentzian model used in the literature. Doing so, we observe a large discrepancy between the two sets of values which warns us about the risks of using simple fitting expressions. Interestingly, we demonstrate that the quality of the fit can be improved by imposing the low bias conductance and Seebeck coefficient of the junction to be recovered in the fitting procedure.

15.
Nano Lett ; 20(8): 5773-5778, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32589039

RESUMEN

We study voltage-induced conductance changes of Pb, Au, Al, and Cu atomic contacts. The experiments are performed in vacuum at low temperature using mechanically controllable break junctions. We determine switching histograms, i.e., distribution functions of switching voltages and switching currents, as a function of the conductance. We observe a clear material dependence: Au reveals the highest and almost conductance-independent switching voltage, while Al has the lowest with a pronounced dependence on the conductance. The theoretical study uses density functional theory and a generalized Langevin equation considering the pumping of particular phonon modes. We identify a runaway voltage as the threshold at which the pumping destabilizes the atomic arrangement. We find qualitative agreement between the average switching voltage and the runaway voltage regarding the material and conductance dependence and contact-to-contact variation of the average characteristic voltages, suggesting that the phonon pumping is a relevant mechanism driving the rearrangements in the experimental contacts.

16.
Nano Lett ; 20(7): 5243-5250, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520573

RESUMEN

Diarylethene molecules are discussed as possible optical switches, which can reversibly transition between completely conjugated (closed) and nonconjugated (open) forms with different electrical conductance and optical absorbance, by exposure to UV and visible light. However, in general the opening reaction exhibits much lower quantum yield than the closing process, hindering their usage in optoelectronic devices. To enhance the opening process, which is supported by visible light, we employ the plasmonic field enhancement of gold films perforated with nanoholes. We show that gold nanohole arrays reveal strong optical transmission in the visible range (∼60%) and pronounced enhancement of field intensities, resulting in around 50% faster switching kinetics of the molecular species in comparison with quartz substrates. The experimental UV-vis measurements are verified with finite-difference time-domain simulation that confirm the obtained results. Thus, we propose gold nanohole arrays as transparent and conductive plasmonic material that accelerates visible-light-triggered chemical reactions including molecular switching.

17.
Nanomaterials (Basel) ; 10(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168942

RESUMEN

Here we study the morphology and the optical properties of assemblies made of small (17 nm) gold nanoparticles (AuNPs) directly on silicon wafers coated with (3-aminopropyl)trimethoxysilane (APTES). We employed aliphatic 1,6-hexanedithiol (HDT) molecules to cross-link AuNPs during a two-stage precipitation procedure. The first immersion of the wafer in AuNP colloidal solution led mainly to the attachment of single particles with few inclusions of dimers and small aggregates. After the functionalization of precipitated NPs with HDT and after the second immersion in the colloidal solution of AuNP, we detected a sharp rise in the number of aggregates compared to single AuNPs and their dimers. The lateral size of the aggregates was about 100 nm, while some of them were larger than 1µm. We propose that the uncompensated dipole moment of the small aggregates appeared after the first precipitation and acts further as the driving force accelerating their further growth on the surface during the second precipitation. By having such inhomogeneous surface coating, the X-ray reciprocal space maps and modulation polarimetry showed well-distinguished signals from the single AuNPs and their dimers. From these observations, we concluded that the contribution from aggregated AuNPs does not hamper the detection and investigation of plasmonic effects for AuNP dimers. Meantime, using unpolarized and polarized light spectroscopy, the difference in the optical signals between the dimers, being formed because of self-aggregation and the one being cross-linked by means of HDT, was not detected.

18.
Nat Nanotechnol ; 14(10): 925-926, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527842
19.
Phys Chem Chem Phys ; 21(25): 13446-13452, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31166342

RESUMEN

The knowledge of the electronic structure and dynamics of nanoparticles is a prerequisite to develop miniaturized single-electron devices based on nanoparticles. Low-temperature transport measurements of individual stable metallic nanoparticles enable unravelling the system specific electronic structure while ultrafast optical spectroscopy gives access to the electron dynamics. In this work, we investigate bare and thiol-functionalized gold nanoparticles. For the latter, we employ a fast and low-cost fabrication technique which yields nanoparticles with narrow size distribution. Using relatively long thiol-ended alkane chains for the functionalization modifies the electronic density of states of the nanoparticles. The study of decay dynamics of surface-plasmon-related hot electrons reveals the presence of electronic states at the interface which serve as a fast decay channel for electronic relaxation. By low-temperature scanning tunnelling microscopy we precisely investigate the energy scales and electronic interactions relevant for the tunnel charge transport through this system. We observe that the interaction between the functional ligand and the substrate on which the nanoparticles reside also influences the electronic transport. The procedure that we employ can be easily adapted to other metallic nanoparticles. Our findings are therefore important for incorporating them into single-electron devices.

20.
Phys Rev Lett ; 122(15): 154301, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050522

RESUMEN

We study the vibrational motion of mechanical resonators under strong drive in the strongly nonlinear regime. By imaging the vibrational state of rectangular silicon nitride membrane resonators and by analyzing the frequency response using optical interferometry, we show that, upon increasing the driving strength, the membrane adopts a peculiar deflection pattern formed by concentric rings superimposed onto the drum head shape of the fundamental mode. Such a circular symmetry cannot be described as a superposition of a small number of excited linear eigenmodes. Furthermore, different parts of the membrane vibrate at different multiples of the drive frequency, an observation that we denominate as "localization of overtones." We introduce a phenomenological model that is based on the coupling of a small number of effective nonlinear resonators, representing the different parts of the membrane, and that describes the experimental observations correctly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...