Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 90(3): 1692-6, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15585568

RESUMEN

The enhanced cortisol release after protein-rich meals might represent a neuroendocrine response to food allergens. We tested whether the antigenicity of proteins contributes to this effect. Twelve healthy men nasogastrically received casein, its less allergenic hydrolysate, and placebo. Contrary to expectations, secretion of cortisol (area under the curve, 742.70 +/- 73.48 vs. 542.95 +/- 70.31 micromol/liter.min, P < 0.03) and ACTH (2020.21 +/- 251.10 vs. 1649.82 +/- 241.23 micromol/liter.min, P < 0.05) was stronger on casein-hydrolysate than casein. Systemic immune activity remained unaffected as indicated by unchanged IL-6 plasma concentrations. This finding indicates that the grade of hydrolysis of a protein and the presence of particular amino acids, rather than its antigenicity, are crucial for the pituitary-adrenal response to nutrients. To further examine whether this response is triggered at the gastrointestinal mucosa or after the substance has reached the circulation, in a supplementary experiment, amino acids were given either nasogastrically or iv to healthy men (n = 4). Only the nasogastric infusion of amino acids induced a significant rise in cortisol concentrations. Serum concentrations of tryptophan, which is known to directly excite the hypothalamo-pituitary-adrenal axis, were comparable for both conditions. We conclude that the meal-related hypothalamo-pituitary-adrenal axis response to amino acids results from a signal that rather acts at the gastrointestinal mucosa than directly via the circulating blood.


Asunto(s)
Proteínas en la Dieta/farmacocinética , Ingestión de Alimentos/fisiología , Hidrocortisona/sangre , Absorción Intestinal/fisiología , Hormona Adrenocorticotrópica/sangre , Adulto , Caseínas/farmacocinética , Hipersensibilidad a los Alimentos/fisiopatología , Humanos , Interleucina-6/sangre , Mucosa Intestinal/fisiología , Intubación Gastrointestinal , Masculino
2.
Biochem J ; 361(Pt 3): 673-9, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11802798

RESUMEN

We tested the hypothesis that differential expression of liver plasma membrane transporters might account for variations in biliary lipid secretion rates between gallstone-susceptible C57L/J and gallstone-resistant AKR/J mice. Plasma membrane fractions and total RNA isolated from livers of mice fed with a control or lithogenic (15% fat/1.25% cholesterol/0.5% cholic acid) diet were used for measurements of steady-state gene expression of hepatobiliary transport systems for bile salts (Ntcp1/Slc10a1, Oatp1/Slc21a1 and Bsep/Abcb11), phospholipids (Mdr2/Abcb4), organic anions (Mrp2/Abcc2) and organic cations (Oct1/Slc22a1). Irrespective of the diet, the steady-state gene expression of hepatobiliary transporters did not differ significantly between the two strains. Despite a higher basal bile flow and bile-salt secretion in C57L mice, Mrp2 (Abcc2) and Bsep (Abcb11) expression did not differ between the two strains. Elevated biliary phospholipid secretion in response to the lithogenic diet was linked to increased Mdr2 (Abcb4) protein expression, whereas the induction of Oct1 (Slc22a1) might reflect an enhanced uptake of choline for augmented phospholipid synthesis. In response to the lithogenic diet, Bsep (Abcb11) protein expression was up-regulated only marginally and bile salt secretion did not increase. The down-regulation of Ntcp1 (Slc10a1) protein expression might protect hepatocytes from high intracellular bile-salt loads. We conclude that variations in protein function rather than in the gene expression of liver plasma membrane transporters might account for variations in biliary lipid secretion rates. Our findings support the concept that the formation of lithogenic bile is caused by the hypersecretion of bile salts as a result of augmented availability of canalicular membrane cholesterol, possibly amplified by bile-salt-phospholipid uncoupling due to the increased bile flow.


Asunto(s)
Membrana Celular/metabolismo , Colelitiasis/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Animales , Aniones , Ácidos y Sales Biliares , Transporte Biológico , Western Blotting , Cationes , Cartilla de ADN/farmacología , Regulación hacia Abajo , Metabolismo de los Lípidos , Ratones , Modelos Biológicos , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...