Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 186: 108608, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554503

RESUMEN

Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.


Asunto(s)
Compuestos de Bifenilo , Fungicidas Industriales , Neonicotinoides , Niacinamida/análogos & derivados , Abejas/efectos de los fármacos , Abejas/fisiología , Animales , Fungicidas Industriales/toxicidad , Estrobilurinas , Insecticidas/toxicidad , Piridinas/toxicidad
2.
Sci Rep ; 13(1): 22484, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110489

RESUMEN

Resistance traits of honeybees (Apis mellifera) against their major parasite Varroa destructor have fascinated scientists and breeders for long. Nevertheless, the mechanisms underlying resistance are still largely unknown. The same applies to possible interactions between host behaviours, mite reproduction and seasonal differences. Two resistance traits, reproductive failure of mites and recapping of brood cells, are of particular interest. High rates of recapping at the colony level were found to correspond with low reproductive success of mites. However, the direct effect of recapping on mite reproduction is still controversial and both traits seem to be very variable in their expression. Thus, a deeper knowledge of both, the effect of recapping on mite reproduction and the seasonal differences in the expression of these traits is urgently needed. To shed light on this host-parasite interaction, we investigated recapping and mite reproduction in full-grown colonies naturally infested with V. destructor. Measurements were repeated five times per year over the course of 3 years. The reproductive success of mites as well as the recapping frequency clearly followed seasonal patterns. Thereby, reproductive failure of mites at the cell level was constantly increased in case of recapping. Interestingly, this did not apply to the occurrence of infertile mites. In line with this, recapping activity in fertile cells was most frequent in brood ages in which mite offspring would be expected. Our results suggest that mite offspring is the main target of recapping. This, in turn, leads to a significantly reduced reproductive success of the parasite.


Asunto(s)
Varroidae , Abejas , Animales , Estaciones del Año , Reproducción , Fertilidad , Interacciones Huésped-Parásitos
3.
Microorganisms ; 11(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004791

RESUMEN

Bees come into contact with bacteria and fungi from flowering plants during their foraging trips. The Western honeybee (Apis mellifera) shows a pronounced hygienic behavior with social interactions, while the solitary red mason bee (Osmia bicornis) lacks a social immune system. Since both visit the same floral resources, it is intriguing to speculate that the body surface of a solitary bee should harbor a more complex microbiome than that of the social honeybee. We compared the cuticular microbiomes of A. mellifera (including three European subspecies) and O. bicornis for the first time by bacterial 16S rRNA and fungal ITS gene-based high-throughput amplicon sequencing. The cuticular microbiome of the solitary O. bicornis was significantly more complex than that of the social A. mellifera. The microbiome composition of A. mellifera subspecies was very similar. However, we counted significantly different numbers of fungi and a higher diversity in the honeybee subspecies adapted to warmer climates. Our results suggest that the cuticular microbiome of bees is strongly affected by visited plants, lifestyle and adaptation to temperature, which have important implications for the maintenance of the health of bees under conditions of global change.

4.
Front Microbiol ; 14: 1271498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965543

RESUMEN

Honey bees are crucial for our ecosystems as pollinators, but the intensive use of plant protection products (PPPs) in agriculture poses a risk for them. PPPs do not only affect target organisms but also affect non-targets, such as the honey bee Apis mellifera and their microbiome. This study is the first of its kind, aiming to characterize the effect of PPPs on the microbiome of the cuticle of honey bees. We chose PPPs, which have frequently been detected in bee bread, and studied their effects on the cuticular microbial community and function of the bees. The effects of the fungicide Difcor® (difenoconazole), the insecticide Steward® (indoxacarb), the combination of both (mix A) and the fungicide Cantus® Gold (boscalid and dimoxystrobin), the insecticide Mospilan® (acetamiprid), and the combination of both (mix B) were tested. Bacterial 16S rRNA gene and fungal transcribed spacer region gene-based amplicon sequencing and quantification of gene copy numbers were carried out after nucleic acid extraction from the cuticle of honey bees. The treatment with Steward® significantly affected fungal community composition and function. The fungal gene copy numbers were lower on the cuticle of bees treated with Difcor®, Steward®, and PPP mix A in comparison with the controls. However, bacterial and fungal gene copy numbers were increased in bees treated with Cantus® Gold, Mospilan®, or PPP mix B compared to the controls. The bacterial cuticular community composition of bees treated with Cantus® Gold, Mospilan®, and PPP mix B differed significantly from the control. In addition, Mospilan® on its own significantly changed the bacterial functional community composition. Cantus® Gold significantly affected fungal gene copy numbers, community, and functional composition. Our results demonstrate that PPPs show adverse effects on the cuticular microbiome of honey bees and suggest that PPP mixtures can cause stronger effects on the cuticular community than a PPP alone. The cuticular community composition was more diverse after the PPP mix treatments. This may have far-reaching consequences for the health of honey bees.

5.
Curr Opin Insect Sci ; 59: 101080, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37391163

RESUMEN

Honeybees are highly organized eusocial insects displaying a distinct division of labor. Juvenile hormone (JH) has long been hypothesized to be the major driver of behavioral transitions. However, more and more experiments in recent years have suggested that the role of this hormone is not as fundamental as hypothesized. Vitellogenin, a common egg yolk precursor protein, seems to be the major regulator of division of labor in honeybees, in connection with nutrition and the neurohormone and transmitter octopamine. Here, we review the role of vitellogenin in controlling honeybee division of labor and its modulation by JH, nutrition, and the catecholamine octopamine.

6.
Sci Rep ; 13(1): 8399, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225773

RESUMEN

Formic acid is the main component of the ant's major weapon against enemies. Being mainly used as a chemical defense, the acid is also exploited for recruitment and trail marking. The repelling effect of the organic acid is used by some mammals and birds which rub themselves in the acid to eliminate ectoparasites. Beekeepers across the world rely on this effect to control the parasitic mite Varroa destructor. Varroa mites are considered the most destructive pest of honey bees worldwide and can lead to the loss of entire colonies. Formic acid is highly effective against Varroa mites but can also kill the honeybee queen and worker brood. Whether formic acid can also affect the behavior of honey bees is unknown. We here study the effect of formic acid on sucrose responsiveness and cognition of honey bees treated at different live stages in field-relevant doses. Both behaviors are essential for survival of the honey bee colony. Rather unexpectedly, formic acid clearly improved the learning performance of the bees in appetitive olfactory conditioning, while not affecting sucrose responsiveness. This exciting side effect of formic acid certainly deserves further detailed investigations.


Asunto(s)
Hormigas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Varroidae , Abejas , Animales , Cognición , Translocasas Mitocondriales de ADP y ATP , Sacarosa , Mamíferos
7.
Ecotoxicol Environ Saf ; 256: 114850, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37018858

RESUMEN

The increasing loss of pollinators over the last decades has become more and more evident. Intensive use of plant protection products is one key factor contributing to this decline. Especially the mixture of different plant protection products can pose an increased risk for pollinators as synergistic effects may occur. In this study we investigated the effect of the fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their mixture on honeybees. Since both plant protection products are frequently applied sequentially to the same plants (e.g. oilseed rape), their combination is a realistic scenario for honeybees. We investigated the mortality, the sucrose responsiveness and the differential olfactory learning performance of honeybees under controlled conditions in the laboratory to reduce environmental noise. Intact sucrose responsiveness and learning performance are of pivotal importance for the survival of individual honeybees as well as for the functioning of the entire colony. Treatment with two sublethal and field relevant concentrations of each plant protection product did not lead to any significant effects on these behaviors but affected the mortality rate. However, our study cannot exclude possible negative sublethal effects of these substances in higher concentrations. In addition, the honeybee seems to be quite robust when it comes to effects of plant protection products, while wild bees might be more sensitive.


Asunto(s)
Fungicidas Industriales , Insecticidas , Abejas , Animales , Sacarosa , Neonicotinoides , Insecticidas/farmacología
8.
Commun Biol ; 6(1): 147, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737661

RESUMEN

Cuticular hydrocarbons (CHCs) cover the cuticle of insects and serve as desiccation barrier and as semiochemicals. While the main enzymatic steps of CHC biosynthesis are well understood, few of the underlying genes have been identified. Here we show how exploitation of intrasexual CHC dimorphism in a mason wasp, Odynerus spinipes, in combination with whole-genome sequencing and comparative transcriptomics facilitated identification of such genes. RNAi-mediated knockdown of twelve candidate gene orthologs in the honey bee, Apis mellifera, confirmed nine genes impacting CHC profile composition. Most of them have predicted functions consistent with current knowledge of CHC metabolism. However, we found first-time evidence for a fatty acid amide hydrolase also influencing CHC profile composition. In situ hybridization experiments furthermore suggest trophocytes participating in CHC biosynthesis. Our results set the base for experimental CHC profile manipulation in Hymenoptera and imply that the evolutionary origin of CHC biosynthesis predates the arthropods' colonization of land.


Asunto(s)
Avispas , Abejas/genética , Animales , Avispas/genética , Caracteres Sexuales , Evolución Biológica , Feromonas , Hidrocarburos
9.
Anim Cogn ; 26(3): 909-928, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36609813

RESUMEN

The question of whether individuals perform consistently across a variety of cognitive tasks is relevant for studies of comparative cognition. The honey bee (Apis mellifera) is an appropriate model to study cognitive consistency as its learning can be studied in multiple elemental and non-elemental learning tasks. We took advantage of this possibility and studied if the ability of honey bees to learn a simple discrimination correlates with their ability to solve two tasks of higher complexity, reversal learning and negative patterning. We performed four experiments in which we varied the sensory modality of the stimuli (visual or olfactory) and the type (Pavlovian or operant) and complexity (elemental or non-elemental) of conditioning to examine if stable correlated performances could be observed across experiments. Across all experiments, an individual's proficiency to learn the simple discrimination task was positively and significantly correlated with performance in both reversal learning and negative patterning, while the performances in reversal learning and negative patterning were positively, yet not significantly correlated. These results suggest that correlated performances across learning paradigms represent a distinct cognitive characteristic of bees. Further research is necessary to examine if individual cognitive consistency can be found in other insect species as a common characteristic of insect brains.


Asunto(s)
Cognición , Refuerzo en Psicología , Abejas , Animales , Insectos , Olfato , Aprendizaje Inverso
10.
Front Insect Sci ; 3: 1135187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469460

RESUMEN

The selection of honeybee strains resistant to the ectoparasitic mite Varroa destructor is generally considered as one of the most sustainable ways of coping with this major bee parasite. Thus, breeding efforts increasingly focus on resistance parameters in addition to common beekeeping traits like honey yield and gentleness. In every breeding effort, the success strongly depends on the quantifiability and heritability of the traits accounted. To find the most suitable traits among the manifold variants to assess Varroa resistance, it is necessary to evaluate how easily a trait can be measured (i.e., testing effort) in relation to the underlying heritability (i.e., expected transfer to the following generation). Various possible selection traits are described as beneficial for colony survival in the presence of Varroa destructor and therefore are measured in breeding stocks around the globe. Two of them in particular, suppressed mite reproduction (SMR, sensu lato any reproductive failure of mother mites) and recapping of already sealed brood cells have recently gained increasing attention among the breeders because they closely resemble resistance mechanisms of some Varroa-surviving honeybee populations. However, it was still unknown whether the genetic background of the trait is sufficient for targeted selection. We therefore investigated the heritabilities and genetic correlations for SMR and REC, distinguishing between recapping of infested cells (RECinf) and all cells (RECall), on an extensive dataset of Buckfast and Carniolan stock in Germany. With an accessible h² of 0.18 and 0.44 for SMR and an accessible h² of 0.44 and 0.40 for RECinf, both traits turned out to be very promising for further selection in the Buckfast and Carnica breeding population, respectively.

11.
Front Insect Sci ; 3: 1186027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469501
12.
Front Insect Sci ; 3: 1146464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469509

RESUMEN

[This corrects the article DOI: 10.3389/finsc.2022.951317.].

13.
Front Physiol ; 13: 1089669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714315

RESUMEN

Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars.

14.
Front Insect Sci ; 2: 951317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38468773

RESUMEN

The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.

15.
J Exp Biol ; 224(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34664669

RESUMEN

Individuals differing in their cognitive abilities and foraging strategies may confer a valuable benefit to their social groups as variability may help them to respond flexibly in scenarios with different resource availability. Individual learning proficiency may either be absolute or vary with the complexity or the nature of the problem considered. Determining whether learning ability correlates between tasks of different complexity or between sensory modalities is of high interest for research on brain modularity and task-dependent specialization of neural circuits. The honeybee Apis mellifera constitutes an attractive model to address this question because of its capacity to successfully learn a large range of tasks in various sensory domains. Here, we studied whether the performance of individual bees in a simple visual discrimination task (a discrimination between two visual shapes) is stable over time and correlates with their capacity to solve either a higher-order visual task (a conceptual discrimination based on spatial relationships between objects) or an elemental olfactory task (a discrimination between two odorants). We found that individual learning proficiency within a given task was maintained over time and that some individuals performed consistently better than others within the visual modality, thus showing consistent aptitude across visual tasks of different complexity. By contrast, performance in the elemental visual-learning task did not predict performance in the equivalent elemental olfactory task. Overall, our results suggest the existence of cognitive specialization within the hive, which may contribute to ecological social success.


Asunto(s)
Insectos , Aprendizaje Espacial , Animales , Abejas , Cognición , Odorantes , Olfato
16.
Biomolecules ; 11(9)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34572588

RESUMEN

The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.


Asunto(s)
Abejas/fisiología , Octopamina/farmacología , Tiramina/farmacología , Visión Ocular/fisiología , Animales , Abejas/efectos de los fármacos , Electrorretinografía , Conducta Alimentaria/efectos de los fármacos , Fototaxis/efectos de los fármacos , Estadística como Asunto , Visión Ocular/efectos de los fármacos
17.
Insects ; 12(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34564208

RESUMEN

The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.

18.
Brain Behav Evol ; 96(1): 13-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34265763

RESUMEN

Sucrose represents an important carbohydrate source for most bee species. In the Western honeybee (Apis mellifera) it was shown that individual sucrose responsiveness correlates with the task performed in the colony, supporting the response threshold theory which states that individuals with the lowest threshold for a task-associated stimuli will perform the associated task. Tyramine was shown to modulate sucrose responsiveness, most likely via the tyramine 1 receptor. This receptor is located in brain areas important for the processing of gustatory stimuli. We asked whether the spatial expression pattern of the tyramine 1 receptor is a unique adaptation of honeybees or if its expression represents a conserved trait. Using a specific tyramine receptor 1 antibody, we compared the spatial expression of this receptor in the brain of different corbiculate bee species, including eusocial honeybees, bumblebees, stingless bees, and the solitary bee Osmia bicornis as an outgroup. We found a similar labeling pattern in the mushroom bodies, the central complex, the dorsal lobe, and the gnathal ganglia, indicating a conserved receptor expression. With respect to sucrose responsiveness this result is of special importance. We assume that the tyramine 1 receptor expression in these neuropiles provides the basis for modulation of sucrose responsiveness. Furthermore, the tyramine 1 receptor expression seems to be independent of size, as labeling is similar in bee species that differ greatly in their body size. However, the situation in the optic lobes appears to be different. Here, the lobula of stingless bees is clearly labeled by the tyramine receptor 1 antibody, whereas this labeling is absent in other species. This indicates that the regulation of this receptor is different in the optic lobes, while its function in this neuropile remains unclear.


Asunto(s)
Receptores de Amina Biogénica , Animales , Abejas , Encéfalo/metabolismo , Cuerpos Pedunculados , Receptores de Amina Biogénica/metabolismo , Tiramina
19.
Ecotoxicol Environ Saf ; 211: 111869, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33450537

RESUMEN

Solitary bees are among the most important pollinators worldwide however population declines especially in croplands has been noticed. The novel pesticide sulfoxaflor is a competitive modulator of nicotinic acetylcholine receptors (nAChR) in insects. While there is evidence of a negative impact of neonicotinoids on bees of several social organization levels, our overall knowledge on the impact of sulfoxaflor on bees is poor. Here we present for the first time a study showing effects of field realistic doses of sulfoxaflor on solitary bees. Bees submitted to long term exposure of field realistic doses of sulfoxaflor (5 µg dm-3, 10 µg dm-3, 50 µg dm-3) and control were observed regarding their survival rate. Moreover, we recorded metrics related to flower visitation and flight performance. We discover that the highest field realistic dose is lethal to Osmia bicornis along five days of exposure. The effect of sulfoxaflor reduces the outcome of foraging, important features for fruit and seed production of cross-pollinated plant species. Bees exposed to pesticide visited flowers mostly walking rather than flying. Flight performance was also impaired by the pesticide.


Asunto(s)
Abejas/fisiología , Insecticidas/toxicidad , Animales , Conducta Alimentaria/efectos de los fármacos , Flores/efectos de los fármacos , Neonicotinoides/toxicidad , Plaguicidas/toxicidad , Polinización/efectos de los fármacos , Piridinas , Compuestos de Azufre , Tasa de Supervivencia
20.
Insects ; 13(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35055848

RESUMEN

In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...