Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hered ; 115(1): 112-119, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37988623

RESUMEN

Snakeflies (Raphidioptera) are the smallest order of holometabolous insects that have kept their distinct and name-giving appearance since the Mesozoic, probably since the Jurassic, and possibly even since their emergence in the Carboniferous, more than 300 million years ago. Despite their interesting nature and numerous publications on their morphology, taxonomy, systematics, and biogeography, snakeflies have never received much attention from the general public, and only a few studies were devoted to their molecular biology. Due to this lack of molecular data, it is therefore unknown, if the conserved morphological nature of these living fossils translates to conserved genomic structures. Here, we present the first genome of the species and of the entire order of Raphidioptera. The final genome assembly has a total length of 669 Mbp and reached a high continuity with an N50 of 5.07 Mbp. Further quality controls also indicate a high completeness and no meaningful contamination. The newly generated data was used in a large-scaled phylogenetic analysis of snakeflies using shared orthologous sequences. Quartet score and gene concordance analyses revealed high amounts of conflicting signals within this group that might speak for substantial incomplete lineage sorting and introgression after their presumed re-radiation after the asteroid impact 66 million years ago. Overall, this reference genome will be a door-opening dataset for many future research applications, and we demonstrated its utility in a phylogenetic analysis that provides new insights into the evolution of this group of living fossils.


Asunto(s)
Fósiles , Genoma , Animales , Filogenia , Genómica , Insectos/genética
2.
BMC Genomics ; 24(1): 443, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550607

RESUMEN

BACKGROUND: Morphological and traditional genetic studies of the young Pliocene genus Hyles have led to the understanding that despite its importance for taxonomy, phenotypic similarity of wing patterns does not correlate with phylogenetic relationship. To gain insights into various aspects of speciation in the Spurge Hawkmoth (Hyles euphorbiae), we assembled a chromosome-level genome and investigated some of its characteristics. RESULTS: The genome of a male H. euphorbiae was sequenced using PacBio and Hi-C data, yielding a 504 Mb assembly (scaffold N50 of 18.2 Mb) with 99.9% of data represented by the 29 largest scaffolds forming the haploid chromosome set. Consistent with this, FISH analysis of the karyotype revealed n = 29 chromosomes and a WZ/ZZ (female/male) sex chromosome system. Estimates of chromosome length based on the karyotype image provided an additional quality metric of assembled chromosome size. Rescaffolding the published male H. vespertilio genome resulted in a high-quality assembly (651 Mb, scaffold N50 of 22 Mb) with 98% of sequence data in the 29 chromosomes. The larger genome size of H. vespertilio (average 1C DNA value of 562 Mb) was accompanied by a proportional increase in repeats from 45% in H. euphorbiae (measured as 472 Mb) to almost 55% in H. vespertilio. Several wing pattern genes were found on the same chromosomes in the two species, with varying amounts and positions of repetitive elements and inversions possibly corrupting their function. CONCLUSIONS: Our two-fold comparative genomics approach revealed high gene synteny of the Hyles genomes to other Sphingidae and high correspondence to intact Merian elements, the ancestral linkage groups of Lepidoptera, with the exception of three simple fusion events. We propose a standardized approach for genome taxonomy using nucleotide homology via scaffold chaining as the primary tool combined with Oxford plots based on Merian elements to infer and visualize directionality of chromosomal rearrangements. The identification of wing pattern genes promises future understanding of the evolution of forewing patterns in the genus Hyles, although further sequencing data from more individuals are needed. The genomic data obtained provide additional reliable references for further comparative studies in hawkmoths (Sphingidae).


Asunto(s)
Cromosomas , Mariposas Nocturnas , Animales , Femenino , Masculino , Sintenía , Haploidia , Filogenia , Mariposas Nocturnas/genética , Cariotipo
3.
Sci Adv ; 8(12): eabm6494, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333583

RESUMEN

Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.


Asunto(s)
Quirópteros , Aclimatación , Adaptación Fisiológica/genética , Animales , Quirópteros/genética , Dieta , Genoma
4.
Mol Ecol Resour ; 22(4): 1454-1464, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34882987

RESUMEN

Accurate estimates of genome sizes are important parameters for both theoretical and practical biodiversity genomics. Here we present a fast, easy-to-implement and accurate method to estimate genome size from the number of bases sequenced and the mean sequencing depth. To estimate the latter, we take advantage of the fact that an accurate estimation of the Poisson distribution parameter lambda is possible from truncated data, restricted to the part of the sequencing depth distribution representing the true underlying distribution. With simulations we show that reasonable genome size estimates can be gained even from low-coverage (10×), highly discontinuous genome drafts. Comparison of estimates from a wide range of taxa and sequencing strategies with flow cytometry estimates of the same individuals showed a very good fit and suggested that both methods yield comparable, interchangeable results.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Tamaño del Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ADN/métodos
5.
Genome Biol Evol ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34865004

RESUMEN

Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.


Asunto(s)
Daphnia , Repeticiones de Microsatélite , Animales , Daphnia/genética , Ecosistema , Variación Genética , Hibridación Genética , Filogenia
6.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34849805

RESUMEN

Among all molluscs, land snails are a scientifically and economically interesting group comprising edible species, alien species and agricultural pests. Yet, despite their high diversity, the number of genome drafts publicly available is still scarce. Here, we present the draft genome assembly of the land snail Candidula unifasciata, a widely distributed species along central Europe, belonging to the Geomitridae family, a highly diversified taxon in the Western-Palearctic region. We performed whole genome sequencing, assembly and annotation of an adult specimen based on PacBio and Oxford Nanopore long read sequences as well as Illumina data. A genome draft of about 1.29 Gb was generated with a N50 length of 246 kb. More than 60% of the assembled genome was identified as repetitive elements. In total, 22,464 protein-coding genes were identified in the genome, of which 62.27% were functionally annotated. This is the first assembled and annotated genome for a geometrid snail and will serve as reference for further evolutionary, genomic and population genetic studies of this important and interesting group.


Asunto(s)
Genoma , Genómica , Animales , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Caracoles
8.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200166, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33813896

RESUMEN

Mollusca are the second largest and arguably most diverse phylum of the animal kingdom. This is in sharp contrast to our very limited knowledge concerning epigenetic mechanisms including DNA methylation in this invertebrate group. Here, we inferred DNA methylation patterns by analysing the normalized dinucleotide CG content in protein-coding sequences and identified DNA methyltransferases (DNMT1 and 3) in published transcriptomes and genomes of 140 species across all eight classes of molluscs. Given the evolutionary age and morphological diversity of molluscs, we expected to find evidence for diverse methylation patterns. Our inferences suggest that molluscs possess substantial levels of DNA methylation in gene bodies as a rule. Yet, we found deviations from this general picture with regard to (i) the CpG observed/expected distributions indicating a reduction in DNA methylation in certain groups and (ii) the completeness of the DNMT toolkit. Reductions were evident in Caudofoveata, Solenogastres, Polyplacophora, Monoplacophora, as well as Scaphopoda. Heterobranchia and Oegopsida were remarkable as they lacked DNMT3, usually responsible for de novo methylation, yet showed signs of DNA methylation. Our survey may serve as guidance for direct empirical analyses of DNA methylation in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Asunto(s)
Metilación de ADN , Moluscos/genética , Animales
9.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200156, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33813898

RESUMEN

Despite the global biodiversity of terrestrial gastropods and their ecological and economic importance, the genomic basis of ecological adaptation and speciation in land snail taxa is still largely unknown. Here, we combined whole-genome re-sequencing with population genomics to evaluate the historical demography and the speciation process of two closely related species of land snails from western Europe, Candidula unifasciata and C. rugosiuscula. Historical demographic analysis indicated fluctuations in the size of ancestral populations, probably driven by Pleistocene climatic fluctuations. Although the current population distributions of both species do not overlap, our approximate Bayesian computation model selection approach on several speciation scenarios suggested that gene flow has occurred throughout the divergence process until recently. Positively selected genes diverging early in the process were associated with intragenomic and cyto-nuclear incompatibilities, respectively, potentially fostering reproductive isolation as well as ecological divergence. Our results suggested that the speciation between species entails complex processes involving both gene flow and ecological speciation, and that further research based on whole-genome data can provide valuable understanding on species divergence. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Asunto(s)
Especiación Genética , Genoma , Caracoles/genética , Animales , Francia , Secuenciación Completa del Genoma
10.
Zootaxa ; 4915(3): zootaxa.4915.3.1, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33756559

RESUMEN

Based on two male and two female individuals, we describe a new genus and species of mud snake, Myanophis thanlyinensis gen. nov., sp. nov., from the vicinity of the campus of East Yangon University, Yangon, Thanlyin, Myanmar. This species differs from every other homalopsid species by the following combination of characters: (1) dorsal scales smooth, row formula 21-21-19 or 21-21-17; (2) tail short, ratio tail length/SVL 0.185-0.204 in males, 0.160-0.167 in females; (3) nasal scales separated; (4) 125-126 ventral scales in males, 120-122 in females; (5) 38-39 subcaudal scales in males, 32-34 in females; and (6) hemipenis bilobed. Its matrilineal genealogy (based on analyses of 16S and cytochrome b sequences), associates Myanophis thanlyinensis gen. nov., sp. nov. most closely with species of the genera Myrrophis and Gyiophis. The new taxon differs from the species of Myrrophis and Gyiophis by having a bilobed hemipenis (vs. unilobed). Myanophis thanlyinensis gen. nov., sp. nov. differs further from the species of Myrrophis by having 125-126 ventral scales in males and 120-122 in females (vs. 137-162 and 137-164, respectively), and 38-39 subcaudal scales in males and 32-34 in females (vs. 39-55 and 37-52, respectively). Myanophis thanlyinensis gen. nov., sp. nov. differs further from the species of Gyiophis by lacking dark blotches along flank (vs. present), and by having 21 dorsal scales rows at midbody (vs. 25). We provide an identification key to the homalopsid species known to occur in Myanmar. As a novelty to the classic holotype description and characterization, the individual has been genome sequenced by Illumina short-read technology and its genome has been assembled into a draft nuclear genome and a complete, annotated mitochondrial genome. This innovative approach comprehensively and permanently characterizes the genomic variation of the holotype.


Asunto(s)
Ecosistema , Lagartos , Distribución Animal , Estructuras Animales , Animales , Femenino , Masculino , Mianmar , Filogenia
11.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491162

RESUMEN

Recent advances in genome sequencing technologies have simplified the generation of genome data and reduced the costs for genome assemblies, even for complex genomes like those of vertebrates. More practically oriented genomic courses can prepare university students for the increasing importance of genomic data used in biological and medical research. Low-cost third-generation sequencing technology, along with publicly available data, can be used to teach students how to process genomic data, assemble full chromosome-level genomes, and publish the results in peer-reviewed journals, or preprint servers. Here we outline experiences gained from 2 master's-level courses and discuss practical considerations for teaching hands-on genome assembly courses.


Asunto(s)
Genómica/educación , Universidades , Técnicas Genéticas , Genética/educación , Genoma , Genómica/métodos , Humanos
12.
G3 (Bethesda) ; 10(7): 2179-2183, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32385046

RESUMEN

Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university master's course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behavior. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published Hi-C data. The use of ∼35x nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using the Hi-C data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 96.1% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly. We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university master's course. The use of ∼35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


Asunto(s)
Nanoporos , Universidades , Animales , Cromosomas/genética , Peces/genética , Genómica , Humanos
13.
Genome Biol Evol ; 11(12): 3445-3451, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774498

RESUMEN

Members of the speciose insect order Trichoptera (caddisflies) provide important ecosystem services, for example, nutrient cycling through breaking down of organic matter. They are also of industrial interest due to their larval silk secretions. These form the basis for their diverse case-making behavior that allows them to exploit a wide range of ecological niches. Only five genomes of this order have been published thus far, with variable qualities regarding contiguity and completeness. A low-cost sequencing strategy, that is, using a single Oxford Nanopore flow cell per individual along with Illumina sequence reads was successfully used to generate high-quality genomes of two Trichoptera species, Plectrocnemia conspersa and Hydropsyche tenuis. Of the de novo assembly methods compared, assembly of low coverage Nanopore reads (∼18×) and subsequent polishing with long reads followed by Illumina short reads (∼80-170× coverage) yielded the highest genome quality both in terms of contiguity and BUSCO completeness. The presented genomes are the shortest to date and extend our knowledge of genome size across caddisfly families. The genomic region that encodes for light (L)-chain fibroin, a protein component of larval caddisfly silk was identified and compared with existing L-fibroin gene clusters. The new genomic resources presented in this paper are among the highest quality Trichoptera genomes and will increase the knowledge of this important insect order by serving as the basis for phylogenomic and comparative genomic studies.


Asunto(s)
Genoma de los Insectos/genética , Holometabola/genética , Animales , Evolución Molecular , Fibroínas/genética , Genes de Insecto/genética , Tamaño del Genoma , Genómica , Holometabola/clasificación , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
14.
Genome Biol Evol ; 11(8): 2306-2311, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329228

RESUMEN

The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques-Illumina, PacBio, and Oxford Nanopore-we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.


Asunto(s)
Hormigas/genética , Evolución Molecular , Genoma de los Insectos , Genómica/métodos , Hidrocarburos/metabolismo , Proteínas de Insectos/genética , Simbiosis , Animales , Hormigas/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de la Especie , Transcriptoma
15.
Ecol Evol ; 8(22): 11071-11082, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30519426

RESUMEN

The ability of organisms to respond to predation threat by exhibiting induced defenses is well documented, but studies on the potential mechanistic basis for such responses are scarce. Here, we examine the transcriptomic response to predator kairomones of two functionally distinct developmental stages in embryos of the aquatic snail Radix balthica: E8-the stage at which a range-finding trial indicated that kairomone-induced accelerated growth and development first occurred; and E9-the stage at which embryos switched from ciliary- to crawling-driven locomotion. We tested whether expression profiles were influenced by kairomones and whether this influence varied between stages. We also identified potential candidate genes for investigating mechanisms underpinning induced responses. There were 6,741 differentially expressed transcripts between developmental stages, compared to just five in response to predator kairomones. However, on examination of functional enrichment in the transcripts responding to predator kairomones and adopting a less stringent significance threshold, 206 transcripts were identified relating to muscle function, growth, and development, with this response being greater at the later E9 stage. Furthermore, these transcripts included putative annotations for genes identified as responding to predator kairomones in other taxa, including C1q, lectin, and actin domains. Globally, transcript expression appeared reduced in response to predator kairomones and we hypothesize that this might be a result of metabolic suppression, as has been reported in other taxa in response to predation threat.

16.
Mol Ecol ; 27(6): 1439-1456, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29473242

RESUMEN

The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data and population genetic modelling. Common-garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.


Asunto(s)
Chironomidae/genética , Genética de Población , Genómica , Selección Genética/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Animales , Chironomidae/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Europa (Continente) , Flujo Genético
17.
BMC Bioinformatics ; 18(1): 148, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28253837

RESUMEN

BACKGROUND: The classification of samples on a molecular level has manifold applications, from patient classification regarding cancer treatment to phylogenetics for identifying evolutionary relationships between species. Modern methods employ the alignment of DNA or amino acid sequences, mostly not genome-wide but only on selected parts of the genome. Recently proteomics-based approaches have become popular. An established method for the identification of peptides and proteins is liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, protein sequences from MS/MS spectra are identified by means of database searches, given samples with known genome-wide sequence information, then sequence based methods are applied. Alternatively, de novo peptide sequencing algorithms annotate MS/MS spectra and deduce peptide/protein information without a database. A newer approach independent of additional information is to directly compare unidentified tandem mass spectra. The challenge then is to compute the distance between pairwise MS/MS runs consisting of thousands of spectra. METHODS: We present DISMS2, a new algorithm to calculate proteome-wide distances directly from MS/MS data, extending the algorithm compareMS2, an approach that also uses a spectral comparison pipeline. RESULTS: Our new more flexible algorithm, DISMS2, allows for the choice of the spectrum distance measure and includes different spectra preprocessing and filtering steps that can be tailored to specific situations by parameter optimization. CONCLUSIONS: DISMS2 performs well for samples from species with and without database annotation and thus has clear advantages over methods that are purely based on database search.


Asunto(s)
Algoritmos , Cromatografía Liquida/métodos , Péptidos/análisis , Proteoma/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Humanos
19.
Mol Ecol ; 24(3): 643-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25533031

RESUMEN

Characterizing hybrid zones and their dynamics is a central goal in evolutionary biology, but this is particularly challenging for morphologically cryptic species. The lack of conspicuous divergence between parental types means intermediate hybrid forms often go undetected. We aimed to detect and characterize a suspected hybrid zone between a pair of morphologically cryptic lineages of the freshwater snail, Radix. We sampled Radix from across a contact zone between two mitochondrial lineages (Radix balthica and an undescribed lineage termed 'MOTU3') and detected admixture between two nuclear genotype clusters, which were significantly but not categorically associated with the mitochondrial lineages. Using a model selection approach, we show that the admixture cline is best explained by an interaction between precipitation and temperature gradients over the area, rather than geographic distance. We thus hypothesize that the correlation with climatic gradients suggests environmental selection has played a role in maintaining the hybrid zone. In a 2050 climate change scenario, we furthermore predict an expansion of one of the nuclear clusters and a widening of the hybrid zone as the climate warms and dries.


Asunto(s)
Evolución Biológica , Hibridación Genética , Selección Genética , Caracoles/clasificación , Animales , Teorema de Bayes , Cambio Climático , Código de Barras del ADN Taxonómico , ADN Mitocondrial/genética , Agua Dulce , Variación Genética , Genotipo , Geografía , Repeticiones de Microsatélite , Modelos Genéticos , Datos de Secuencia Molecular , Caracoles/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...