Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 79: 199-208, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30612680

RESUMEN

To date, the position and shape of the human thermoneutral zone (TNZ) remain uncertain. Indications exist that the individual TNZ might be influenced by age, body composition and level of acclimatisation. The objective of the present study was to explore the individual metabolic TNZ, using dynamic thermal conditions to assess both metabolic lower and upper critical temperatures (LCT and UCT) and, secondly, to test the effect of passive mild heat acclimation on the human metabolic TNZ. A dynamic protocol consisting of two experimental conditions was designed: starting from a thermoneutral condition (28.8 ±â€¯0.3 °C), temperature gradually increased to 37.5 ±â€¯0.6 °C during warming (UP) or decreased to 17.8 ±â€¯0.6 °C during cooling (DOWN). For six participants, temperature increased further to 41.6 ±â€¯1.0 °C during UP. Eleven healthy men (19-31 y) underwent UP and DOWN twice, i.e. before and after passive mild heat acclimation (PMHA, 7 days at ~33 °C for 6 h/day). Energy expenditure, body temperatures and heart rate were measured during UP and DOWN. We show that the generally assumed LCT of approximately 28 °C for an average male person does not match the dynamically assessed LCTs in this study, as those were considerably lower in most cases (23.3 ±â€¯3.2 °C pre-acclimation; 23.4 ±â€¯2.0 °C post-acclimation). Distinct inter-individual variation of the dynamic LCT was evident (range pre-PMHA:9.7 °C; post-PMHA:5.4 °C). Regarding the metabolic response to increasing temperatures, only minor or no increases in energy metabolism occurred. PMHA did not significantly change the positioning of the LCTs, but lowered Tcore (pre-PMHA: -0.13 ±â€¯0.13 °C, P = 0.011; post-PMHA: -0.14 ±â€¯0.15 °C, P = 0.026) and affected skin temperature distribution. The applied method allowed for the determination of individual dynamic LCTs, however, distinct metabolic UCTs were not evident in humans. For a better understanding of the human UCT, future studies should incorporate individualised temperature ranges and also a measurement of evaporative heat loss, to allow for a two-factor analysis of both metabolic and evaporative human UCT.


Asunto(s)
Aclimatación , Regulación de la Temperatura Corporal/fisiología , Adulto , Variación Biológica Individual , Composición Corporal , Metabolismo Energético , Frecuencia Cardíaca , Humanos , Masculino , Temperatura Cutánea
2.
Temperature (Austin) ; 4(2): 176-186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680933

RESUMEN

Passive mild heat acclimation (PMHA) reflects realistic temperature challenges encountered in everyday life. Active heat acclimation, combining heat exposure and exercise, influences several important thermophysiological parameters; for example, it decreases core temperature and enhances heat exchange via the skin. However, it is unclear whether PMHA elicits comparable adaptations. Therefore, this study investigated the effect of PMHA on thermophysiological parameters. Participants were exposed to slightly increased temperatures (∼33°C/22% RH) for 6 h/d over 7 consecutive days. To study physiologic responses before and after PMHA, participants underwent a temperature ramp (UP), where ambient temperature increased from a thermoneutral value (28.8 ± 0.3°C) to 37.5 ± 0.6°C. During UP, core and skin temperature, water loss, cardiovascular parameters, skin blood flow and energy expenditure were measured. Three intervals were selected to compare data before and after PMHA: baseline (minutes 30-55: 28.44 ± 0.21°C), T1 (minutes 105-115: 33.29 ± 0.4°C) and T2 (minutes 130-140: 35.68 ± 0.61°C). After 7 d of PMHA, core (T1: -0.13 ± 0.13°C, P = 0.011; T2: -0.14 ± 0.15°C, P = 0.026) and proximal skin temperature (T1: -0.22 ± 0.29°C, P = 0.029) were lower during UP, whereas distal skin temperature was higher in a thermoneutral state (baseline: +0.74 ± 0.77°C, P = 0.009) and during UP (T1: +0.49 ± 0.76°C, P = .057 (not significant), T2:+0.51 ± 0.63°C, P = .022). Moreover, water loss was reduced (-30.5 ± 33.3 ml, P = 0.012) and both systolic (-7.7 ± 7.7 mmHg, P = 0.015) and diastolic (-4.4 ± 4.8 mmHg, P = 0.001) blood pressures were lowered in a thermoneutral state. During UP, only systolic blood pressure was decreased (T2: -6.1 ± 4.4 mmHg, P = 0.003). Skin blood flow was significantly decreased at T1 (-28.35 ± 38.96%, P = 0.037), yet energy expenditure remained unchanged. In conclusion, despite the mild heat stimulus, we show that PMHA induces distinct thermophysiological adaptations leading to increased resilience to heat.

3.
Acta Physiol (Oxf) ; 216(2): 163-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26172218

RESUMEN

Light is essential for vision and plays an important role in non-visual responses, thus affecting alertness, mood and circadian rhythms. Furthermore, light influences physiological processes, such as thermoregulation, and therefore may be expected to play a role in thermal comfort (TC) as well. A systematic literature search was performed for human studies exploring the relation between ocular light exposure, thermophysiology and TC. Experimental results show that light in the evening can reduce melatonin secretion, delay the natural decline in core body temperature (CBT) and slow down the increase in distal skin temperature. In the morning though, bright light can result in a faster decline in melatonin levels, thus enabling a faster increase in CBT. Moreover, the colour of light can affect temperature perception of the environment. Light with colour tones towards the red end of the visual spectrum leads to a warmer perception compared to more bluish light tones. It should be noted, however, that many results of light on thermal responses are inconclusive, and a theoretical framework is largely lacking. In conclusion, light is capable of evoking thermophysiological responses and visual input can alter perception of the thermal environment. Therefore, lighting conditions should be taken into consideration during thermophysiological research and in the design of indoor climates.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Luz , Ritmo Circadiano/fisiología , Humanos , Iluminación
4.
Physiol Behav ; 107(2): 252-61, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22877870

RESUMEN

Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions.


Asunto(s)
Aire Acondicionado/efectos adversos , Frío/efectos adversos , Eficiencia/fisiología , Ambiente , Satisfacción Personal , Sensación Térmica/fisiología , Adulto , Aire Acondicionado/métodos , Femenino , Humanos , Masculino , Caracteres Sexuales , Temperatura Cutánea/fisiología , Encuestas y Cuestionarios
5.
Indoor Air ; 22(3): 253-62, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22106946

RESUMEN

UNLABELLED: Thermal sensation has a large influence on thermal comfort, which is an important parameter for building performance. Understanding of thermal sensation may benefit from incorporating the physiology of thermal reception. The main issue is that humans do not sense temperature directly; the information is coded into neural discharge rates. This manuscript describes the development of a mathematical model of thermal sensation based on the neurophysiology of thermal reception. Experimental data from two independent studies were used to develop and validate the model. In both studies, skin and core temperature were measured. Thermal sensation votes were asked on the seven-point ASHRAE thermal sensation scale. For the development dataset, young adult males (N=12, 0.04Clo) were exposed to transient conditions; Tair 30-20-35-30°C. For validation, young adult males (N=8, 1.0Clo) were exposed to transient conditions; Tair: 17-25-17°C. The neurophysiological model significantly predicted thermal sensation for the development dataset (r2=0.89, P<0.001). Only information from warm-sensitive skin and core thermoreceptors was required. Validation revealed that the model predicted thermal sensation within acceptable range (root mean squared residual=0.38). The neurophysiological model captured the dynamics of thermal sensation. Therefore, the neurophysiological model of thermal sensation can be of great value in the design of high-performance buildings. PRACTICAL IMPLICATIONS: The presented method, based on neurophysiology, can be highly beneficial for predicting thermal sensation under complex environments with respect to transient environments.


Asunto(s)
Modelos Neurológicos , Termorreceptores/fisiología , Sensación Térmica/fisiología , Adulto , Temperatura Corporal/fisiología , Humanos , Masculino , Adulto Joven
6.
Indoor Air ; 20(4): 273-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20557374

RESUMEN

UNLABELLED: Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum thermal condition differ between young adults and elderly. There is a lack of studies that describe the effect of aging on thermal comfort and productivity during a moderate temperature drift. In this study, the effect of a moderate temperature drift on physiological responses, thermal comfort, and productivity of eight young adults (age 22-25 year) and eight older subjects (age 67-73 year) was investigated. They were exposed to two different conditions: S1-a control condition; constant temperature of 21.5 degrees C; duration: 8 h; and S2-a transient condition; temperature range: 17-25 degrees C, duration: 8 h, temperature drift: first 4 h: +2 K/h, last 4 h: -2 K/h. The results indicate that thermal sensation of the elderly was, in general, 0.5 scale units lower in comparison with their younger counterparts. Furthermore, the elderly showed more distal vasoconstriction during both conditions. Nevertheless, TS of the elderly was related to air temperature only, while TS of the younger adults also was related to skin temperature. During the constant temperature session, the elderly preferred a higher temperature in comparison with the young adults. PRACTICAL IMPLICATIONS: Because the stock of fossil fuels is limited, energy savings play an important role. Thermal comfort is one of the most important performance indicators to successfully apply measures to reduce the energy need in buildings. Allowing drifts in indoor temperature is one of the options to reduce the energy demand. This study contributes to the knowledge concerning the effects of a moderate temperature drift and the age of the inhabitants on their thermal comfort.


Asunto(s)
Envejecimiento/fisiología , Temperatura Corporal/fisiología , Temperatura , Sensación Térmica/fisiología , Adulto , Anciano , Regulación de la Temperatura Corporal/fisiología , Femenino , Humanos , Masculino , Temperatura Cutánea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...