Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Invasions ; 23(12): 3891-3906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456614

RESUMEN

Aedes aegypti (Linnaeus) was once highly prevalent across eastern Australia, resulting in epidemics of dengue fever. Drought conditions have led to a rapid rise in semi-permanent, urban water storage containers called rainwater tanks known to be critical larval habitat for the species. The presence of these larval habitats has increased the risk of establishment of highly urbanised, invasive mosquito vectors such as Ae. aegypti. Here we use a spatially explicit network model to examine the role that unsealed rainwater tanks may play in population connectivity of an Ae. aegypti invasion in suburbs of Brisbane, a major Australian city. We characterise movement between rainwater tanks as a diffusion-like process, limited by a maximum distance of movement, average life expectancy, and a probability that Ae. aegypti will cross wide open spaces such as roads. The simulation model was run against a number of scenarios that examined population spread through the rainwater tank network based on non-compliance rates of tanks (unsealed or sealed) and road grids. We show that Ae. aegypti tank infestation and population spread was greatest in areas of high tank density and road lengths were shortest e.g. cul-de-sacs. Rainwater tank non-compliance rates of over 30% show increased connectivity when compared to less than 10%, suggesting rainwater tanks non-compliance should be maintained under this level to minimize the spread of an invading Ae. aegypti population. These results presented as risk maps of Ae. aegypti spread across Brisbane, can assist health and government authorities on where to optimally target rainwater tank surveillance and educational activities. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-021-02619-z.

2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33731476

RESUMEN

Agricultural systems have been continuously intensified to meet rising demand for agricultural products. However, there are increasing concerns that larger, more connected crop fields and loss of seminatural areas exacerbate pest pressure, but findings to date have been inconclusive. Even less is known about whether increased pest pressure results in measurable effects for farmers, such as increased insecticide use and decreased crop yield. Using extensive spatiotemporal data sampled every 2 to 3 d throughout five growing seasons in 373 cotton fields, we show that pests immigrated earlier and were more likely to occur in larger cotton fields embedded in landscapes with little seminatural area (<10%). Earlier pest immigration resulted in earlier spraying that was further linked to more sprays per season. Importantly, crop yield was the lowest in these intensified landscapes. Our results demonstrate that both environmental conservation and production objectives can be achieved in conventional agriculture by decreasing field sizes and maintaining seminatural vegetation in the surrounding landscapes.


Asunto(s)
Agricultura , Productos Agrícolas , Insecticidas , Control de Plagas , Restauración y Remediación Ambiental , Agricultores , Insecticidas/administración & dosificación , Estaciones del Año , Análisis Espacio-Temporal
3.
J Med Entomol ; 57(2): 443-453, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31693154

RESUMEN

Urban landscape features play an important role in the distribution and population spread of mosquito vectors. Furthermore, current insecticide and novel rear-and-release strategies for urban mosquito management rarely consider the spatial structure of the landscape when applying control practices. Here, we undertake a mark-recapture experiment to examine how urban features influence the movement and distribution of Australian container-inhabiting Aedes vectors. We pay attention to the role of semipermanent water storage containers, called rainwater tanks, and the influence of movement barriers, such as roads, on the spread and distribution of vector populations. Results suggest that Aedes aegypti (Linnaeus) (Diptera: Culicidae) were more likely to be captured around rainwater tanks, and that released males travel throughout residential blocks but do not cross roads. Conversely, female Aedes notoscriptus (Skuse) (Diptera: Culicidae) movement was uninhibited by roads and rainwater tanks did not influence female distribution or oviposition behavior. Using an isotropic Gaussian kernel framework, we show that vector movement is likely to be greater when applying a temporal effect, than when estimated by traditional methods. We conclude that a greater understanding on the role of urban features on vector movement will be important in the new age of rear-and-release mosquito control strategies, particularly those where estimations of movement are important for ensuring efficacy of application.


Asunto(s)
Aedes/fisiología , Distribución Animal , Ambiente , Mosquitos Vectores/fisiología , Movimiento , Animales , Ciudades , Femenino , Masculino , Control de Mosquitos , Queensland , Especificidad de la Especie
4.
PLoS One ; 14(4): e0211167, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31022231

RESUMEN

A key determinant of insect persistence in marginal habitats is the ability to tolerate environmental extremes such as temperature. Aedes aegypti is highly invasive and little is known about the physiological sensitivity of the species to fluctuating temperature regimes at the lower critical threshold for development. A temperature that may limit the establishment and persistence of the species in sub-optimal regions. Daily winter temperatures were measured in common Australian larval habitats, replicated in environmental chambers and used to investigate the effect of fluctuating temperatures on the development and survival of tropical and subtropical strains of Australian Ae. aegypti. Development was slow for all treatments but both strains were able to complete development to the adult stage, suggesting previous models underestimate the potential for the species to persist in eastern Australia. Results suggested that thermal buffering in large volume habitats, and water that persists for greater than 32 days, will facilitate completion of the life cycle during sub-tropical winters. Furthermore, we provide a non-linear estimate of the lower critical temperature for Ae. aegypti development that suggests the current threshold may be incorrect. Our study demonstrates that the current re-introduction of water storage containers such as rainwater tanks, into major Australian population centres will increase the risk of Ae. aegypti establishment by permitting year-round development in locations south of its current distribution.


Asunto(s)
Aedes/fisiología , Dengue/transmisión , Larva/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Aedes/virología , Animales , Australia , Dengue/virología , Virus del Dengue , Larva/virología , Mosquitos Vectores/virología , Lluvia , Estaciones del Año , Temperatura , Clima Tropical , Agua
5.
Proc Natl Acad Sci U S A ; 115(33): E7863-E7870, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30072434

RESUMEN

The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.


Asunto(s)
Productos Agrícolas , Ecosistema , Modelos Biológicos , Control Biológico de Vectores , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología
6.
PLoS Negl Trop Dis ; 11(8): e0005848, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28846682

RESUMEN

Aedes aegypti (L.) (Diptera: Culicidae) is a highly invasive mosquito whose global distribution has fluctuated dramatically over the last 100 years. In Australia the distribution of Ae. aegypti once spanned the eastern seaboard, for 3,000 km north to south. However, during the 1900s this distribution markedly reduced and the mosquito disappeared from its southern range. Numerous hypotheses have been proffered for this retraction, however quantitative evidence of the mechanisms driving the disappearance are lacking. We examine historical records during the period when Ae. aegypti disappeared from Brisbane, the largest population centre in Queensland, Australia. In particular, we focus on the targeted management of Ae. aegypti by government authorities, that led to local elimination, something rarely observed in large cities. Numerous factors are likely to be responsible including the removal of larval habitat, especially domestic rainwater tanks, in combination with increased mosquito surveillance and regulatory enforcement. This account of historical events as they pertain to the elimination of Ae. aegypti from Brisbane, will inform assessments of the risks posed by recent human responses to climate change and the reintroduction of 300,000 rainwater tanks into the State over the past decade.


Asunto(s)
Aedes/crecimiento & desarrollo , Dengue/prevención & control , Transmisión de Enfermedad Infecciosa/prevención & control , Monitoreo Epidemiológico , Control de Mosquitos/métodos , Animales , Ciudades , Ecosistema , Política de Salud , Humanos , Queensland/epidemiología
7.
PLoS One ; 12(1): e0169167, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28046073

RESUMEN

Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.


Asunto(s)
Agricultura/métodos , Bacillus thuringiensis , Evolución Biológica , Gossypium , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/genética , Animales , Toxinas Bacterianas/genética , Productos Agrícolas/genética , Ecosistema , Femenino , Gossypium/genética , Larva , Masculino , Plantas Modificadas Genéticamente , Queensland , Análisis Espacio-Temporal
8.
Ecol Appl ; 25(4): 1114-30, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26465046

RESUMEN

There is increasing evidence that biological control of agricultural pests is affected by the landscape context, although the mechanisms behind this pattern have received little attention. Ecological theory predicts that one key mechanism mediating successful pest suppression is early predator immigration to agricultural fields. However, the importance of this population process under different landscape contexts remains unknown. Here, we elucidate the relative importance of landscape context and timing of predator immigration on aphid suppression by manipulating exposure to predation in agroecosystems located across a gradient of landscape complexity in a subtropical horticultural region in Australia. Aphid suppression varied with landscape context, from populations escaping control to almost complete pest suppression. In general, we found higher aphid suppression when predators were allowed immediate and continuous access to aphids than when predators were delayed or excluded for a week, but responses varied in each landscape. Contrary to previous reports from temperate agricultural landscapes, aphid suppression was neutral or negatively associated with natural and seminatural vegetation, whereas aphid suppression was positively associated with landscapes with a higher proportion of alfalfa. When landscapes were classified according to their levels of complexity, we showed that early predation resulted in similar levels of pest suppression in simplified landscapes (i.e., with low proportions of alfalfa and habitat diversity) as late predation in complex landscapes (i.e., with high proportions of alfalfa and habitat diversity). Our data show that timing of predator arrival to agricultural fields is as important as landscape complexity for mediating pest control in agroecosystems. Furthermore, our results suggest that key distributions of suitable habitats that facilitate natural enemy movement can enhance biological control in simplified landscapes.


Asunto(s)
Insectos/fisiología , Control Biológico de Vectores/métodos , Conducta Predatoria/fisiología , Arañas/fisiología , Agroquímicos , Animales , Ecosistema , Modelos Biológicos , Plantas/clasificación , Dinámica Poblacional , Queensland , Factores de Tiempo
9.
Trends Ecol Evol ; 30(9): 524-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26138384

RESUMEN

A common suggestion to support ecosystem services to agriculture provided by mobile organisms is to increase the amount of natural and seminatural habitat in the landscape. This might, however, be inefficient, and demands for agricultural products limit the feasibility of converting arable land into natural habitat. To develop more targeted means to promote ecosystem services, we need a solid understanding of the limitations to population growth for service-providing organisms. We propose a research agenda that identifies resource bottlenecks and interruptions over time to key beneficial organisms, emphasising their resulting population dynamics. Targeted measures that secure the continuity of resources throughout the life cycle of service-providing organisms are likely to effectively increase the stock, flow, and stability of ecosystem services.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Ecosistema , Animales , Estadios del Ciclo de Vida , Dinámica Poblacional , Factores de Tiempo
11.
Insect Sci ; 22(1): 35-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25099692

RESUMEN

Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management.


Asunto(s)
Ecosistema , Cadena Alimentaria , Control Biológico de Vectores/métodos , Animales , Artrópodos , Productos Agrícolas/parasitología , Modelos Biológicos , Conducta Predatoria
12.
Environ Entomol ; 42(6): 1137-48, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24216288

RESUMEN

The aphelinid parasitoid Eretmocerus hayati Zolnerowich & Rose (Hymenoptera: Aphelinidae) was recently released in Australia as a biocontrol agent against the crop pest Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). It was found that the parasitoid can spread over several kilometers in a single generation and continue laying eggs for over a fortnight. A simple wind-advection model was fitted to emergence data from a first release between Fassifern and Kalbar, Queensland, and its predictive ability was tested against the second release near Carnarvon, Western Australia. The fitting of the model was used to develop several hypotheses about the dispersal of E. hayati, which were validated by the second release: E. hayati flies in the same direction as the wind to a distance proportional to the wind speed; this wind-borne flight takes place at any time during daylight hours; a flight is attempted every day after emergence unless there are high wind conditions during that day; and the high wind condition that will delay flight is wind speeds in excess of ≍2 m/s. This model of E. hayati dispersal may be contrasted with previous models fitted for Eretmocerus species, for which dispersal was dominated by diffusion processes, and parasitoid spread was constrained to the scales of tens and hundreds of meters.


Asunto(s)
Distribución Animal , Modelos Teóricos , Avispas , Animales , Femenino , Masculino , Viento
13.
PLoS One ; 8(5): e62407, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671595

RESUMEN

The way an invasion progresses through space is a theme of interest common to invasion ecology and biological pest control. Models and mark-release studies of arthropods have been used extensively to extend and inform invasion processes of establishment and spread. However, the extremely common single-scale approach of monitoring initial spread leads to misinterpretation of rate and mode. Using the intentional release of a novel biological control agent (a parasitic hymenoptera, Eretmocerus hayati Zolnerowich & Rose (Hymenoptera: Aphelinidae), we studied its initial dispersal and spread at three different spatial scales, the local scale (tens of metres), field scale (hundreds of metres) and landscape scale (kilometres) around the release point. We fit models to each observed spread pattern at each spatial scale. We show that E. hayati exhibits stratified dispersal; moving further, faster and by a different mechanism than would have been concluded with a single local-scale post-release sampling design. In fact, interpretation of each scale independent of other scales gave three different models of dispersal, and three different impressions of the dominant dispersal mechanisms. Our findings demonstrate that using a single-scale approach may lead to quite erroneous conclusions, hence the necessity of using a multiple-scale hierarchical sampling design for inferring spread and the dominant dispersal mechanism of either human intended or unintended invasions.


Asunto(s)
Distribución Animal , Especies Introducidas , Avispas , Animales , Simulación por Computador , Hemípteros/parasitología , Humanos , Modelos Biológicos , Control Biológico de Vectores , Queensland
14.
Oecologia ; 111(2): 233-240, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28307999

RESUMEN

Vegetational diversity within agricultural fields is often suggested as a means to reduce insect herbivore populations and to increase their natural enemies. In this paper we compare population densities of herbivores, predators, and parasitoids on collards in monocultures and on collards interplanted with two different groups of weeds, one with weed species from the same plant family as the collards (Brassicaceae) and one with weed species from unrelated plant families (non-Brassicaceae). The collards in the Brassicaceae weed polyculture had higher densities (number of herbivores/mean leaf area (cm2) per plant) of specialist herbivores than collards in the non-Brassicaceae weed polyculture and in collard monoculture. The "resource concentration" hypothesis is supported by the observation of higher populations of Phyllotreta spp., acting as facultative polyphages, in the Brassicaceae weed polyculture than in the non-Brassicaceae weed polyculture where Phyllotreta spp. are facultative monophages. Population densities of natural enemies (mostly coccinellids, carabids, and staphylinids) were higher in the polycultures than in the monoculture: carabid and staphylinid predators may be responsible for larval mortality in the imported cabbage worm, Pieris␣rapae, and in the diamondback larvae, Plutella xylostella. In spite of differences in densities of specialist herbivores across treatments, crop yield, leaf area (cm2), the proportion of leaf area damaged, and the number of leaves undamaged did not differ. These findings suggest that plant competition may interfere with attempts to reduce herbivore damage. We conclude that the use of weedy cultures can provide effective means of reducing herbivores if the crop and weed species are not related and plant competition is prevented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...