Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(13): 2580-2595, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38441115

RESUMEN

The JFH coupling constants in fluorinated amino alcohols were investigated through experimental and theoretical approaches. The experimental JFH couplings were only reproduced theoretically when explicit solvation through molecular dynamics (MD) simulations was conducted in DMSO as the solvent. The combination of MD conformation sampling and DFT NMR spin-spin coupling calculations for these compounds reveals the simultaneous presence of through-space (TS) and hydrogen bond (H-bond) assisted JFH coupling between fluorine and hydrogen of the NH group. Furthermore, MD simulations indicate that the hydrogen in the amino group participates in both an intermolecular bifurcated H-bond with DMSO and in transmitting the observed JFH coupling. The contribution of TS to the JFH coupling is due to the spatial proximity of the fluorine and the NH group, aided by a combination of the non-bonding transmission pathway and the hydrogen bonding pathway. The experimental JFH coupling observed for the molecules studied should be represented as 4TS/1hJFH coupling.

2.
Phys Chem Chem Phys ; 25(12): 8624-8630, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36891907

RESUMEN

Experimentally conducted reactions between CO2 and various substrates (i.e., ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et2NH2]HSO4 as a catalyst aiming to investigate and propose 'greener' pathways for future experimental studies. Computations show that EDA is the best to fixate CO2 among the tested substrates: the nucleophilic EDA attack on CO2 is calculated to have a very small energy barrier to overcome (TS1EDA, ΔG‡ = 1.4 kcal mol-1) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, ΔG‡ = 32.8 kcal mol-1). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO4-) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO2 molecules via noncovalent interactions to ease nucleophilic attack on CO2.

3.
J Chem Phys ; 158(5): 054306, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754805

RESUMEN

Glyphosate is a widely used herbicide, and its protonation and deprotonation sites are fundamental to understanding its properties. In this work, the sodiated, protonated, and deprotonated glyphosate were evaluated in the gas phase by infrared multiple photon dissociation spectroscopy to determine the exact nature of these coordination, protonation, and deprotonation states in the gas phase. In this context, Natural Bond Orbital analyses were carried out to unravel interactions that govern glyphosate (de)protonation states in the gas phase. The solvent effect on the protonation/deprotonation equilibria was also investigated by implicit (Solvation Model Based on Density and polarizable continuum models) and explicit solvation models (Monte Carlo and Molecular Dynamics simulations). These results show that glyphosate is protonated in the phosphonate group in the gas phase because of the strong hydrogen bond between the carboxylic oxygen (O7) and the protonated phosphonate group (O8-H19), while the most stable species in water is protonated at the amino group because of the preferential interaction of the NH2 + group and the solvent water molecules. Similarly, deprotonated glyphosate [Glyp-H]- was shown to be deprotonated at the phosphonate group in the gas phase but not in solution, also because of the preferential solvation of the NH2 + group present in the other deprotomers. Therefore, these results show that the stabilization of the protonated amino group by the solvent molecules is the governing factor of the (de)protonation equilibrium of glyphosate in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA