Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3D Print Addit Manuf ; 11(2): 467-475, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689931

RESUMEN

The development of innovative production processes and the optimization of photobioreactors play an important role in generating industrial competitive production technologies for phototrophic biofilms. With emerse photobioreactors a technology was introduced that allowed efficient surface attached cultivation of terrestrial cyanobacteria. However, the productivity of emerse photobioreactors depends on the available cultivation surface. By the implementation of biocarriers to the bioreactor volume, the cultivation surface can be increased which potentially improves productivity and thus the production of valuable compounds. To investigate the surface attached cultivation on biocarriers new photobioreactors need to be developed. Additive manufacturing (AM) offers new opportunities for the design of photobioreactors but producing the needed transparent parts can be challenging using AM techniques. In this study an emerse fixed bed photobioreactor was designed for the use of biocarriers and manufactured using different AM processes. To validate the suitability of the photobioreactor for phototrophic cultivation, the optical properties of three-dimensional (3D)-printed transparent parts and postprocessing techniques to improve luminous transmittance of the components were investigated. We found that stereolithography 3D printing can produce parts with a high luminous transmittance of over 85% and that optimal postprocessing by sanding and clear coating improved the clarity and transmittance to more than 90%. Using the design freedom of AM resulted in a bioreactor with reduced part count and improved handling. In summary, we found that modern 3D-printing technologies and materials are suitable for the manufacturing of functional photobioreactor prototypes.

2.
Bioprocess Biosyst Eng ; 45(5): 931-941, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235034

RESUMEN

Productive biofilms are gaining growing interest in research due to their potential of producing valuable compounds and bioactive substances such as antibiotics. This is supported by recent developments in biofilm photobioreactors that established the controlled phototrophic cultivation of algae and cyanobacteria. Cultivation of biofilms can be challenging due to the need of surfaces for biofilm adhesion. The total production of biomass, and thus production of e.g. bioactive substances, within the bioreactor volume highly depends on the available cultivation surface. To achieve an enlargement of surface area for biofilm photobioreactors, biocarriers can be implemented in the cultivation. Thereby, material properties and design of the biocarriers are important for initial biofilm formation and growth of cyanobacteria. In this study, special biocarriers were designed and additively manufactured to investigate different polymeric materials and surface designs regarding biofilm adhesion of the terrestrial cyanobacterium Nostoc flagelliforme (CCAP 1453/33). Properties of 3D-printed materials were characterized by determination of wettability, surface roughness, and density. To evaluate the influence of wettability on biofilm formation, material properties were specifically modified by gas-phase fluorination and biofilm formation was analyzed on biocarriers with basic and optimized geometry in shaking flask cultivation. We found that different polymeric materials revealed no significant differences in wettability and with identical surface design no significant effect on biomass adhesion was observed. However, materials treated with fluorination as well as optimized biocarrier design showed improved wettability and an increase in biomass adhesion per biocarrier surface.


Asunto(s)
Cianobacterias , Fotobiorreactores , Biopelículas , Biomasa , Fotobiorreactores/microbiología , Propiedades de Superficie , Humectabilidad
3.
J Biotechnol ; 320: 28-35, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32533991

RESUMEN

This article covers the development of a novel emerse photobioreactor (ePBR), using a polycarbonate multi-skin sheet (MSS), to cultivate terrestrial cyanobacteria as surface-associated phototrophic biofilms in an aerosol-based cultivation process. The aerosol, generated by ultrasonic transduction, moistens and nourishes the biofilm inside the multi-skin sheet emerse photobioreactor (MSSePBR). Advantages of the MSSePBR, such as its low weight design and reduced water consumption due to the usage of aerosol, simplify the development for future facade bioreactors. To develop the MSSePBR, surface roughness, static contact angle and luminous transmittance were investigated to characterize the properties of the cultivation surface for phototrophic cultivation. The polymeric MSS showed good luminous transmittance and proofed its optical suitability for the cultivation of terrestrial cyanobacteria. Using the MSSePBR, the terrestrial cyanobacteria Coleofasciculus chthonoplastes and Trichocoleus sociatus were cultivated with either ambient air, air with increased CO2 content or flue gas. The cultivation of terrestrial cyanobacteria showed higher productivities for biomass in the MSSePBR than in suspended systems. Cultivation with increased CO2 contents and flue gas was possible, thus a combination with flue gas treatment is feasible. An up-scaled prototype of the MSSePBR was introduced to show the possibilities for future industrial-sized and facade applications.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Cianobacterias/metabolismo , Fotobiorreactores/microbiología , Diseño de Equipo , Cemento de Policarboxilato/química , Propiedades de Superficie
4.
Sci Rep ; 9(1): 16046, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690759

RESUMEN

Ischemic heart disease is the globally leading cause of death. When using coronary CT angiography, the functional hemodynamics within the myocardium remain uncertain. In this study myocardial CT perfusion imaging using iodine contrast agent demonstrated to strongly improve the assessment of myocardial disorders. However, a retrieval of such dynamics using Hounsfield units from conventional CT poses concerns with respect to beam-hardening effects and low contrast-to-noise ratio (CNR). Dual-energy CT offers novel approaches to overcome aforementioned limitations. Quantitative peak enhancement, perfusion, time to peak and iodine volume measurements inside the myocardium were determined resulting in 0.92 mg/ml, 0.085 mg/ml/s 17.12 s and 29.89 mg/ml*s, respectively. We report on the first extensive quantitative and iodine-based analysis of myocardial dynamics in a healthy porcine model using a dual-layer spectral CT. We further elucidate on the potential of reducing the radiation dose from 135 to 18 mGy and the contrast agent volume from 60 to 30 mL by presenting a two-shot acquisition approach and measuring iodine concentrations in the myocardium in-vivo down to 1 mg/ml, respectively. We believe that dynamic quantitative iodine perfusion imaging may be a highly sensitive tool for the precise functional assessment and monitoring of early myocardial ischemia.


Asunto(s)
Yodo/farmacología , Modelos Cardiovasculares , Isquemia Miocárdica/diagnóstico por imagen , Imagen de Perfusión Miocárdica , Miocardio , Tomografía Computarizada por Rayos X , Animales , Porcinos
5.
PLoS One ; 13(9): e0204565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261038

RESUMEN

Disorders of the lungs such as chronic obstructive pulmonary disease (COPD) are a major cause of chronic morbidity and mortality and the third leading cause of death in the world. The absence of sensitive diagnostic tests for early disease stages of COPD results in under-diagnosis of this treatable disease in an estimated 60-85% of the patients. In recent years a grating-based approach to X-ray dark-field contrast imaging has shown to be very sensitive for the detection and quantification of pulmonary emphysema in small animal models. However, translation of this technique to imaging systems suitable for humans remains challenging and has not yet been reported. In this manuscript, we present the first X-ray dark-field images of in-situ human lungs in a deceased body, demonstrating the feasibility of X-ray dark-field chest radiography on a human scale. Results were correlated with findings of computed tomography imaging and autopsy. The performance of the experimental radiography setup allows acquisition of multi-contrast chest X-ray images within clinical boundary conditions, including radiation dose. Upcoming clinical studies will have to demonstrate that this technology has the potential to improve early diagnosis of COPD and pulmonary diseases in general.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Autopsia , Cadáver , Diagnóstico Precoz , Estudios de Factibilidad , Femenino , Humanos , Interferometría/instrumentación , Interferometría/métodos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía Torácica/instrumentación , Radiografía Torácica/estadística & datos numéricos , Tomografía Computarizada por Rayos X
6.
Sci Rep ; 7(1): 4807, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684858

RESUMEN

X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm2) of a living pig, acquired with clinically compatible parameters (40 s scan time, approx. 80 µSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Masculino , Radiografía Torácica/instrumentación , Porcinos , Tomografía Computarizada por Rayos X/instrumentación
7.
Sci Rep ; 7(1): 402, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28341830

RESUMEN

Accounting for about 1.5 million deaths annually, lung cancer is the prevailing cause of cancer deaths worldwide, mostly associated with long-term smoking effects. Numerous small-animal studies are performed currently in order to better understand the pathogenesis of the disease and to develop treatment strategies. Within this letter, we propose to exploit X-ray dark-field imaging as a novel diagnostic tool for the detection of lung cancer on projection radiographs. Here, we demonstrate in living mice bearing lung tumors, that X-ray dark-field radiography provides significantly improved lung tumor detection rates without increasing the number of false-positives, especially in the case of small and superimposed nodules, when compared to conventional absorption-based imaging. While this method still needs to be adapted to larger mammals and finally humans, the technique presented here can already serve as a valuable tool in evaluating novel lung cancer therapies, tested in mice and other small animal models.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Radiografía/métodos , Animales , Modelos Animales de Enfermedad , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , Ratones Mutantes , Rayos X
8.
Eur J Radiol ; 89: 27-32, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28267545

RESUMEN

X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador/métodos , Mamografía/métodos , Adulto , Algoritmos , Femenino , Humanos , Reproducibilidad de los Resultados , Rayos X
9.
PLoS One ; 12(1): e0170633, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28129364

RESUMEN

Due to limited X-ray contrast, the use of micro-CT in histology is so far not as widespread as predicted. While specific staining procedures-mostly using iodine-address this shortcoming, long diffusion times restrict its use in the often time-constrained daily routine. Recently, a novel staining protocol has been proposed using a biochemical preconditioning step, which increases the permeability of the cells for the staining agent. This could enable the imaging of entire organs of small mammals at a yet unmatched image quality with reasonable preparation and scan times. We here propose an adaptation of this technique for virtual ophthalmology and histology by volumetrically assessing both human and porcine eyes. Hereby, we demonstrate that (contrast-enhanced) micro-CT can outperform conventional histology in the assessment of tumor entities, as well as functioning as a supplementary tool for surgeons in the positioning of intraocular implants in-vitro and as a general assessment tool for ophthalmologic specimens.


Asunto(s)
Medios de Contraste/administración & dosificación , Ojo/diagnóstico por imagen , Oftalmología/métodos , Microtomografía por Rayos X/métodos , Animales , Medios de Contraste/química , Humanos , Yodo/administración & dosificación , Yodo/química , Permeabilidad/efectos de los fármacos , Coloración y Etiquetado/métodos , Porcinos
10.
Sci Rep ; 6: 36991, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841341

RESUMEN

Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Femenino , Humanos , Mamografía , Microtomografía por Rayos X
12.
PLoS One ; 11(3): e0151889, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27003308

RESUMEN

X-ray phase-contrast computed tomography is an emerging imaging technology with powerful capabilities for three-dimensional (3D) visualization of weakly absorbing objects such as biological soft tissues. This technique is an extension of existing X-ray applications because conventional attenuation-contrast images are simultaneously acquired. The complementary information provided by both the contrast modalities suggests that enhanced material characterization is possible when performing combined data analysis. In this study, we describe how protein, lipid, and water concentrations in each 3D voxel can be quantified by vector decomposition. Experimental results of dairy products, porcine fat and rind, and different human soft tissue types are presented. The results demonstrate the potential of phase-contrast imaging as a new analysis tool. The 3D representations of protein, lipid, and water contents open up new opportunities in the fields of biology, medicine, and food science.


Asunto(s)
Imagenología Tridimensional/métodos , Lípidos/análisis , Proteínas/análisis , Tomografía Computarizada por Rayos X/métodos , Agua/análisis , Animales , Tejido Conectivo/fisiología , Productos Lácteos/análisis , Humanos , Fantasmas de Imagen , Carne Roja/análisis , Porcinos
13.
Biomed Opt Express ; 7(2): 381-91, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26977347

RESUMEN

Differential phase-contrast X-ray imaging using a Talbot-Lau interferometer has recently shown promising results for applications in medical imaging. However, reducing the applied radiation dose remains a major challenge. In this study, we consider the realization of a Talbot-Lau interferometer in a high Talbot order to increase the signal-to-noise ratio for low-dose applications. The quantitative performance of π and π/2 systems at high Talbot orders is analyzed through simulations, and the design energy and X-ray spectrum are optimized for mammography. It is found that operation even at very high Talbot orders is feasible and beneficial for image quality. As long as the X-ray spectrum is matched to the visibility spectrum, the SNR continuously increases with the Talbot order for π-systems. We find that the optimal X-ray spectra and design energies are almost independent of the Talbot order and that the overall imaging performance is robust against small variations in these parameters. Discontinuous spectra, such as that from molybdenum, are less robust because the characteristic lines may coincide with minima in the visibility spectra; however, they may offer slightly better performance. We verify this hypothesis by realizing a prototype system with a mean fringe visibility of above 40% at the seventh Talbot order. With this prototype, a proof-of-principle measurement of a freshly dissected breast at reasonable compression to 4 cm is conducted with a mean glandular dose of only 3 mGy but with a high SNR.

14.
PLoS One ; 10(6): e0130776, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110618

RESUMEN

Phase-contrast mammography using laboratory X-ray sources is a promising approach to overcome the relatively low sensitivity and specificity of clinical, absorption-based screening. Current research is mostly centered on identifying potential diagnostic benefits arising from phase-contrast and dark-field mammography and benchmarking the latter with conventional state-of-the-art imaging methods. So far, little effort has been made to adjust this novel imaging technique to clinical needs. In this article, we address the key points for a successful implementation to a clinical routine in the near future and present the very first dose-compatible and rapid scan-time phase-contrast mammograms of both a freshly dissected, cancer-bearing mastectomy specimen and a mammographic accreditation phantom.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía/métodos , Intensificación de Imagen Radiográfica/métodos , Humanos , Fantasmas de Imagen
15.
Eur Radiol ; 25(12): 3659-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25956934

RESUMEN

OBJECTIVES: Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. METHODS: We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. RESULTS: In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. CONCLUSIONS: On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. KEY POINTS: • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Mamografía/métodos , Neoplasias de la Mama/cirugía , Femenino , Humanos , Mastectomía
16.
Sci Rep ; 5: 9527, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25873414

RESUMEN

Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection.


Asunto(s)
Cálculos Renales/química , Cálculos Renales/diagnóstico por imagen , Microtomografía por Rayos X , Adsorción , Oxalato de Calcio/química , Humanos , Curva ROC , Reproducibilidad de los Resultados , Ácido Úrico/química , Microtomografía por Rayos X/métodos
17.
PLoS One ; 9(5): e93502, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24824594

RESUMEN

Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Mamografía/métodos , Diagnóstico por Imagen , Femenino , Humanos , Sensibilidad y Especificidad
18.
Opt Lett ; 38(22): 4813-6, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24322139

RESUMEN

Phase objects can be characterized using well-known methods such as shear interferometry and deflectometry, which provide information on the partial derivatives of the phase. It is often believed that for phase retrieval it is strictly necessary to have knowledge of two partial derivatives in orthogonal directions. In the praxis, this implies that the measurements have to be performed along two dimensions, which often requires a rotation of the object or rotation of the shear direction. This is time consuming and errors can be easily generated from the process of rotation, especially for image registration in the axial direction. In the present Letter, we will demonstrate that only one partial derivative often suffices to recover the phase, and we will discuss under which conditions that is possible. Simulations and validation experiments are presented.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía de Contraste de Fase/métodos , Análisis Numérico Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...