Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Phys Chem A ; 126(45): 8494-8507, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36334028

RESUMEN

Case studies of 1T-TiSe2 and YBa2Cu3O7-δ have demonstrated that X-ray diffraction (XRD) studies can be used to trace even subtle structural phase transitions which are inherently connected with the onset of superconductivity in these benchmark systems. However, the utility of XRD in the investigation of superconductors like MgB2 lacking an additional symmetry-breaking structural phase transition is not immediately evident. Nevertheless, high-resolution powder XRD experiments on MgB2 in combination with maximum entropy method analyses hinted at differences between the electron density distributions at room temperature and 15 K, that is, below the Tc of approx. 39 K. The high-resolution single-crystal XRD experiments in combination with multipolar refinements presented here can reproduce these results but show that the observed temperature-dependent density changes are almost entirely due to a decrease of atomic displacement parameters as a natural consequence of a reduced thermal vibration amplitude with decreasing temperature. Our investigations also shed new light on the presence or absence of magnesium vacancies in MgB2 samples─a defect type claimed to control the superconducting properties of the compound. We propose that previous reports on the tendency of MgB2 to form non-stoichiometric Mg1-xB2 phases (1 - x ∼ 0.95) during high-temperature (HT) synthesis might result from the interpretation of XRD data of insufficient resolution and/or usage of inflexible refinement models. Indeed, advanced refinements based on an Extended Hansen-Coppens multipolar model and high-resolution X-ray data, which consider explicitly the contraction of core and valence shells of the magnesium cations, do not provide any significant evidence for the formation of non-stoichiometric Mg1-xB2 phases during HT synthesis.

2.
J Appl Crystallogr ; 55(Pt 5): 1255-1266, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249492

RESUMEN

High-pressure (HP) X-ray diffraction experiments at low temperature (LT) require dedicated instruments as well as non-standard sample environments and measuring strategies. This is especially true when helium cryogenic temperatures below 80 K are targeted. Furthermore, only experiments on single-crystalline samples provide the prerequisites to study subtle structural changes in the p-T phase diagram under extreme LT and HP conditions in greater detail. Due to special hardware requirements, such measurements are usually in the realm of synchrotron beamlines. This contribution describes the design of an LT/HP diffractometer (HTD2) to perform single-crystal X-ray diffraction experiments using a laboratory source in the temperature range 400 > T > 2 K while applying pressures of up to 20 GPa.

3.
J Phys Chem Lett ; 13(20): 4447-4454, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35561260

RESUMEN

The vibrational response of the activated C-D bond in the chloroform complex [Pt(C6H5)2(btz-N,N')·CDCl3, where btz = 2,2'-bi-5,6-dihydro-4H-1,3-thiazine] is studied by linear and nonlinear two-dimensional infrared (2D-IR) spectroscopy. The change of the C-D stretching vibration of metal-coordinated CDCl3 relative to the free solvent molecule serves as a measure of the non-classical Pt···D-C interaction strength. The stretching absorption band of the activated C-D bond displays a red shift of 119 cm-1 relative to uncoordinated CDCl3, a strong broadening, and an 8-fold enhancement of spectrally integrated absorption. The infrared (IR) absorption and 2D-IR line shapes are governed by spectral diffusion on 200 fs and 2 ps time scales, induced by the fluctuating solvent CDCl3. The enhanced vibrational absorption and coupling to solvent forces are assigned to the enhanced electric polarizability of the activated C-D bond. Density functional theory calculations show a significant increase of C-D bond polarizability of CDCl3 upon coordination to the 16 valence electron Pt(II) complex.

4.
Angew Chem Int Ed Engl ; 60(36): 20049-20054, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34213805

RESUMEN

Reaction of CHI3 with six equivalents of CrCl2 in THF at low temperatures affords [Cr3 Cl3 (µ2 -Cl)3 (µ3 -CH)(thf)6 ] as the first isolable high-yield CrIII µ3 -methylidyne complex. Substitution of the terminal chlorido ligands via salt metathesis with alkali-metal cyclopentadienides generates isostructural half-sandwich chromium(III)-µ3 -methylidynes [CpR 3 Cr3 (µ2 -Cl)3 (µ3 -CH)] (CpR =C5 H5 , C5 Me5 , C5 H4 SiMe3 ). Side and decomposition products of the Cl/CpR exchange reactions were identified and structurally characterized for [Cr4 (µ2 -Cl)4 (µ2 -I)2 (µ4 -O)(thf)4 ] and [(η5 -C5 H4 SiMe3 )CrCl(µ2 -Cl)2 Li(thf)2 ]. The Cl/CpR exchange drastically changed the ambient-temperature effective magnetic moment µeff from 9.30/9.11 µB (solution/solid) to 3.63/4.32 µB (CpR =C5 Me5 ). Reactions of [Cr3 Cl3 (µ2 -Cl)3 (µ3 -CH)(thf)6 ] with aldehydes and ketones produce intricate mixtures of species through oxy/methylidyne exchange, which were partially identified as radical recombination products through GC/MS analysis and 1 H NMR spectroscopy.

5.
Molecules ; 26(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299544

RESUMEN

Similar to classical asphericity shifts, aspherical deformations of the electron density in the atomic core region can result in core asphericity shifts in refinements using a Hansen-Coppens multipolar model (HCM), especially when highly precise experimental datasets with resolutions far beyond sin(θ)/λ ≤ 1.0 Å-1 are employed. These shifts are about two orders of magnitude smaller than their counterparts caused by valence shell deformations, and their underlying deformations are mainly of dipolar character for 1st row atoms. Here, we analyze the resolution dependence of core asphericity shifts in α-boron. Based on theoretical structure factors, an appropriate Extended HCM (EHCM) is developed, which is tested against experimental high-resolution (sin(θ)/λ ≤ 1.6 Å-1) single-crystal diffraction data. Bond length deviations due to core asphericity shifts of α-boron in the order of 4-6·10-4 Å are small but significant at this resolution and can be effectively compensated by an EHCM, although the correlation of the additional model parameters with positional parameters prevented a free refinement of all core model parameters. For high quality, high resolution data, a proper treatment with an EHCM or other equivalent methods is therefore highly recommended.

6.
J Am Chem Soc ; 142(4): 1864-1870, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31884789

RESUMEN

Single-crystal cryogenic X-ray diffraction at 6 K, electron paramagnetic resonance spectroscopy, and correlated electronic structure calculations are combined to shed light on the nature of the metal-tris(aryloxide) and η2-H, C metal-alkane interactions in the [((t·BuArO)3tacn)UIII(Mecy-C6)]·(Mecy-C6) adduct. An analysis of the ligand field experienced by the uranium center using ab initio ligand field theory in combination with the angular overlap model yields rather unusual U-OArO and U-Ntacn bonding parameters for the metal-tris(aryloxide) interaction. These parameters are incompatible with the concept of σ and π metal-ligand overlap. For that reason, it is deduced that metal-ligand bonding in the [((t·BuArO)3tacn)UIII] moiety is predominantly ionic. The bonding interaction within the [((t·BuArO)3tacn)UIII] moiety is shown to be dispersive in nature and essentially supported by the upper-rim tBu groups of the (t·BuArO)3tacn3- ligand. Our findings indicate that the axial alkane molecule is held in place by the guest-host effect rather than direct metal-alkane ionic or covalent interactions.

7.
ACS Omega ; 4(20): 18741-18759, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31737836

RESUMEN

Binary silicon boride SiB3 has been reported to occur in two forms, as disordered and nonstoichiometric α-SiB3-x , which relates to the α-rhombohedral phase of boron, and as strictly ordered and stoichiometric ß-SiB3. Similar to other boron-rich icosahedral solids, these SiB3 phases represent potentially interesting refractory materials. However, their thermal stability, formation conditions, and thermodynamic relation are poorly understood. Here, we map the formation conditions of α-SiB3-x and ß-SiB3 and analyze their relative thermodynamic stabilities. α-SiB3-x is metastable (with respect to ß-SiB3 and Si), and its formation is kinetically driven. Pure polycrystalline bulk samples may be obtained within hours when heating stoichiometric mixtures of elemental silicon and boron at temperatures 1200-1300 °C. At the same time, α-SiB3-x decomposes into SiB6 and Si, and optimum time-temperature synthesis conditions represent a trade-off between rates of formation and decomposition. The formation of stable ß-SiB3 was observed after prolonged treatment (days to weeks) of elemental mixtures with ratios Si/B = 1:1-1:4 at temperatures 1175-1200 °C. The application of high pressures greatly improves the kinetics of SiB3 formation and allows decoupling of SiB3 formation from decomposition. Quantitative formation of ß-SiB3 was seen at 1100 °C for samples pressurized to 5.5-8 GPa. ß-SiB3 decomposes peritectoidally at temperatures between 1250 and 1300 °C. The highly ordered nature of ß-SiB3 is reflected in its Raman spectrum, which features narrow and distinct lines. In contrast, the Raman spectrum of α-SiB3-x is characterized by broad bands, which show a clear relation to the vibrational modes of isostructural, ordered B6P. The detailed composition and structural properties of disordered α-SiB3-x were ascertained by a combination of single-crystal X-ray diffraction and 29Si magic angle spinning NMR experiments. Notably, the compositions of polycrystalline bulk samples (obtained at T ≤ 1200 °C) and single crystal samples (obtained from Si-rich molten Si-B mixtures at T > 1400 °C) are different, SiB2.93(7) and SiB2.64(2), respectively. The incorporation of Si in the polar position of B12 icosahedra results in highly strained cluster units. This disorder feature was accounted for in the refined crystal structure model by splitting the polar position into three sites. The electron-precise composition of α-SiB3-x is SiB2.5 and corresponds to the incorporation of, on average, two Si atoms in each B12 icosahedron. Accordingly, α-SiB3-x constitutes a mixture of B10Si2 and B11Si clusters. The structural and phase stability of α-SiB3-x were explored using a first-principles cluster expansion. The most stable composition at 0 K is SiB2.5, which however is unstable with respect to the decomposition ß-SiB3 + Si. Modeling of the configurational and vibrational entropies suggests that α-SiB3-x only becomes more stable than ß-SiB3 at temperatures above its decomposition into SiB6 and Si. Hence, we conclude that α-SiB3-x is metastable at all temperatures. Density functional theory electronic structure calculations yield band gaps of similar size for electron-precise α-SiB2.5 and ß-SiB3, whereas α-SiB3 represents a p-type conductor.

8.
Angew Chem Int Ed Engl ; 58(8): 2360-2364, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30570814

RESUMEN

The chemical or physical control parameters for the onset of superconductivity in MB2 C2 hetero-graphene materials are unclear. This is mainly due to the almost ubiquitous positional B/C disorder, rendering the description of real structures of borocarbides into one of the most challenging problems in materials science. We will show that high-resolution X-ray diffraction data provides all the essential information to decode even complex coloring problems due to B/C disorder. Electron density studies and subsequent analyses of the fine structure of the Laplacian of the electron density resolves the local electronic structure of ScB2 C2 at sub-atomic resolution and allows for an unequivocal identification of all atoms involved in the coloring scenario. This information could finally be used to identify the electron deficient character of the B/C layers in ScB2 C2 and to synthesize the first bimetallic hetero-metallocene with lithium and scandium atoms embedded in the pentagonal and heptagonal voids, respectively.

9.
Angew Chem Int Ed Engl ; 57(30): 9310-9314, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29847000

RESUMEN

The synthesis and structural characterization of the hitherto unknown parent Co(bz)2+ (bz=benzene) complex and several of its derivatives are described. Their synthesis starts either from a CoCO5+ salt, or directly from Co2 (CO)8 and a Ag+ salt. Stability and solubility of these complexes was achieved by using the weakly coordinating anions (WCAs) [Al(ORF )4 ]- and [F{Al(ORF )3 }2 ]- {RF =C(CF3 )3 } and the solvent ortho-difluorobenzene (o-DFB). The magnetic properties of Co(bz)2+ were measured and compared in the condensed and gas phases. The weakly bound Co(o-dfb)2+ salts are of particular interest for the preparation of further CoI salts, for example, the structurally characterized low-coordinate 12 valence electron Co(Pt Bu3 )2+ and Co(NHC)2+ salts.

10.
Chemistry ; 24(4): 918-927, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29155467

RESUMEN

The recently published purely metallo-organic NiI salt [Ni(cod)2 ][Al(ORF )4 ] (1, cod=1,5-cyclooctadiene, RF =C(CF3 )3 ) provides a starting point for a new synthesis strategy leading to NiI phosphine complexes, replacing cod ligands by phosphines. Clearly visible colour changes indicate reactions within minutes, while quantum chemical calculations (PBE0-D3(BJ)/def2-TZVPP) approve exergonic reaction enthalpies in all performed ligand exchange reactions. Hence, [Ni(dppp)2 ][Al(ORF )4 ] (2, dppp=1,3-bis(diphenylphosphino)propane), [Ni(dppe)2 ][Al(ORF )4 ] (3, dppe=1,3-bis(diphenyl-phosphino)ethane), three-coordinate [Ni(PPh3 )3 ][Al(ORF )4 ] (4) and a remarkable two-coordinate NiI phosphine complex [Ni(PtBu3 )2 ][Al(ORF )4 ] (5) were characterised by single crystal X-ray structure analysis. EPR studies were performed, confirming a nickel d9 -configuration in complexes 2, 4 and 5. This result is supported by additional magnetization measurements of 4 and 5. Further investigations by cyclic voltammetry indicate relatively high oxidation potentials for these NiI compounds between 0.7 and 1.7 V versus Fc/Fc+ . Screening reactions with O2 and CO gave first insights on the reaction behaviour of the NiI phosphine complexes towards small molecules with formation of mixed phosphine-CO-NiI complexes and oxidation processes yielding new NiI and/or NiII derivatives. Moreover, 4 reacted with CH2 Cl2 at RT to give a dimeric NiII ylide complex (4 c). As CH2 Cl2 is a rather stable alkyl halide with relatively high C-Cl bond energies, 4 appears to be a suitable reagent for more general C-Cl bond activation reactions.

11.
J Phys Chem A ; 121(38): 7219-7235, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28922608

RESUMEN

We outline in this combined experimental and theoretical NMR study that sign and magnitude of J(Si,H) coupling constants provide reliable indicators to evaluate the extent of the oxidative addition of Si-H bonds in hydrosilane complexes. In combination with experimental electron density studies and MO analyses a simple structure-property relationship emerges: positive J(Si,H) coupling constants are observed in cases where M → L π-back-donation (M = transition metal; L = hydrosilane ligand) dominates. The corresponding complexes are located close to the terminus of the respective oxidative addition trajectory. In contrast negative J(Si,H) values signal the predominance of significant covalent Si-H interactions and the according complexes reside at an earlier stage of the oxidative addition reaction pathway. Hence, in nonclassical hydrosilane complexes such as Cp2Ti(PMe3)(HSiMe3-nCln) (with n = 1-3) the sign of J(Si,H) changes from minus to plus with increasing number of chloro substituents n and maps the rising degree of oxidative addition. Accordingly, the sign and magnitude of J(Si,H) coupling constants can be employed to identify and characterize nonclassical hydrosilane species also in solution. These NMR studies might therefore help to reveal the salient control parameters of the Si-H bond activation process in transition-metal hydrosilane complexes which represent key intermediates for numerous metal-catalyzed Si-H bond activation processes. Furthermore, experimental high-resolution and high-pressure X-ray diffraction studies were undertaken to explore the close relationship between the topology of the electron density displayed by the η2(Si-H)M units and their respective J(Si,H) couplings.

12.
Patient Educ Couns ; 100(5): 957-965, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27993435

RESUMEN

OBJECTIVES: To modify and evaluate a patient education program for adult asthma patients in consideration of quality criteria for teaching. METHODS: This was a prospective single-center controlled trial in an inpatient rehabilitation center. The control group (n=215) received the usual lecture-based education program, and the intervention group (n=209) the modified patient education program. Data were assessed at admission, discharge, 6 and 12 months post discharge. The primary outcome was asthma control, the secondary outcomes were asthma knowledge, quality of life, and program acceptance. Analysis of change was performed by ANCOVA for each follow-up, adjusting for baseline values. RESULTS: Statistically significant increases in all health outcomes and in asthma control were maintained in both groups at 12 months: CG: +1.9 (95%-CI 1.3-2.6) IG: +1.6 (95%-CI 0.8-2.3). We observed no significant differences between the programs for asthma control and quality of life. Regarding practical asthma knowledge, after 12 months, a group*time interaction emerged with a small effect size (P=0.06, η2=0.01). CONCLUSION: The modified program was not superior to traditional patient education concerning asthma control. It permanently increased self-management knowledge. PRACTICAL IMPLICATIONS: Structured and behavioral patient education fosters patient's disease management ability. Possible ways of improving asthma control need to be explored.


Asunto(s)
Asma/rehabilitación , Pacientes Internos , Educación del Paciente como Asunto/métodos , Medición de Resultados Informados por el Paciente , Evaluación de Programas y Proyectos de Salud , Adulto , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Estudios Prospectivos , Calidad de Vida
13.
Angew Chem Int Ed Engl ; 55(38): 11673-7, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27503583

RESUMEN

We will outline that the sign and magnitude of J(Si,H) coupling constants provide a highly sensitive tool to measure the extent of Si-H bond activation in nonclassical silane complexes. Up to now, this structure-property relationship was obscured by erroneous J(Si,H) sign determinations in the literature. These new findings also help to identify the salient control parameters of the Si-H bond activation process in nonclassical silane complexes.

14.
Dalton Trans ; 45(35): 13750-65, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27471799

RESUMEN

A series of rare-earth metal diisopropylamide complexes has been obtained via salt metathesis employing LnCl3(THF)x and lithium (LDA) or sodium diisopropylamide (NDA) in n-hexane. Reactions with AM : Ln ratios ≥3 gave ate complexes (AM)Ln(NiPr2)4(THF)n (n = 1, 2; Ln = Sc, Y, La, Lu; AM = Li, Na) in good yields. For smaller rare-earth metal centres such as scandium and lutetium, a Li : Ln ratio = 2.5 accomplished ate-free tris(amido) complexes Ln(NiPr2)3(THF). The chloro-bridged dimeric derivatives [Ln(NiPr2)2(µ-Cl)(THF)]2 (Ln = Sc, Y, La, Lu) could be obtained in high yields for Li : Ln = 1.6-2. The product resulting from the Li : La = 1 : 1.6 reaction revealed a crystal structure containing two different molecules in the crystal lattice, [La(NiPr2)2(THF)(µ-Cl)]2·La(NiPr2)3(THF)2. Recrystallization of the chloro-bridged dimers led to the formation of the monomeric species Ln(NiPr2)2Cl(THF)2 (Ln = Sc, Lu) and La(NiPr2)3(THF)2. The reaction of YCl3 and LDA with Li : Y = 2 in the absence of THF gave a bimetallic ate complex LiY(NiPr2)4 with a chain-like structure. For scandium, the equimolar reactions with LDA or NDA yielded crystals of tetrametallic mono(amido) species, {[Sc(NiPr2)Cl2(THF)]2(LiCl)}2 and [Sc(NiPr2)Cl2(THF)]4, respectively. Depending on the Ln(iii) size, AM, and presence of a donor solvent, ate complexes (AM)Ln(NiPr2)4(THF)n show distinct dynamic behaviour as revealed by variable temperature NMR spectroscopy. The presence of weak LnCH(iPr) ß-agostic interactions, as indicated by Ln-N-C angles <105°, is corroborated by DFT calculations and NBO analysis.

15.
Angew Chem Int Ed Engl ; 54(49): 14706-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26458726

RESUMEN

The straightforward synthesis of the cationic, purely organometallic Ni(I) salt [Ni(cod)2](+)[Al(OR(F))4](-) was realized through a reaction between [Ni(cod)2] and Ag[Al(OR(F))4] (cod = 1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic Ni(I) olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic Ni(I) complexes.


Asunto(s)
Níquel/química , Compuestos Organometálicos/química , Técnicas Electroquímicas , Ligandos , Modelos Moleculares
16.
J Phys Condens Matter ; 27(7): 075702, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25643644

RESUMEN

The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

17.
Angew Chem Int Ed Engl ; 54(8): 2505-9, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25583538

RESUMEN

Square-planar d(8)-ML4 complexes might display subtle but noticeable local Lewis acidic sites in axial direction in the valence shell of the metal atom. These sites of local charge depletion provide the electronic prerequisites to establish weakly attractive 3c-2e M⋅⋅⋅H-C agostic interactions, in contrast to earlier assumptions. Furthermore, we show that the use of the sign of the (1)H NMR shifts as major criterion to classify M⋅⋅⋅H-C interactions as attractive (agostic) or repulsive (anagostic) can be dubious. We therefore suggest a new characterization method to probe the response of these M⋅⋅⋅H-C interactions under pressure by combined high pressure IR and diffraction studies.

18.
Chemistry ; 20(46): 15077-88, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25267571

RESUMEN

Single-phase samples of the compounds K8Al8Si38 (1), Rb8Al8Si38 (2), and Cs7.9Al7.9Si38.1 (3) were obtained with high crystallinity and in good quantities by using a novel flux method with two different flux materials, such as Al and the respective alkali-metal halide salt (KBr, RbCl, and CsCl). This approach facilitates the removal of the product mixture from the container and also allows convenient extraction of the flux media due to the good solubility of the halide salts in water. The products were analyzed by means of single-crystal X-ray structure determination, powder X-ray and neutron diffraction experiments, (27)Al-MAS NMR spectroscopy measurements, quantum chemical calculations, as well as magnetic and transport measurements (thermal conductivity, electrical resistivity, and Seebeck coefficient). Due to the excellent quality of the neutron diffraction data, the difference between the nuclear scattering factors of silicon and aluminum atoms was sufficient to refine their mixed occupancy at specific sites. The role of variable-range hopping for the interpretation of the resistivity and the Seebeck coefficient is discussed.

19.
Inorg Chem ; 53(16): 8691-9, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25068601

RESUMEN

ZnAs was synthesized at 6 GPa and 1273 K utilizing multianvil high-pressure techniques and structurally characterized by single-crystal and powder X-ray diffraction (space group Pbca (No. 61), a = 5.6768(2) Å, b = 7.2796(2) Å, c = 7.5593(2) Å, Z = 8). The compound is isostructural to ZnSb (CdSb type) and displays multicenter bonded rhomboid rings Zn2As2, which are connected to each other by classical two-center, two-electron bonds. At ambient pressure ZnAs is metastable with respect to Zn3As2 and ZnAs2. When heating at a rate of 10 K/min decomposition takes place at ∼700 K. Diffuse reflectance measurements reveal a band gap of 0.9 eV. Electrical resistivity, thermopower, and thermal conductivity were measured in the temperature range of 2-400 K and compared to thermoelectric ZnSb. The room temperature values of the resistivity and thermopower are ∼1 Ω cm and +27 µV/K, respectively. These values are considerably higher and lower, respectively, compared to ZnSb. Above 150 K the thermal conductivity attains low values, around 2 W/m·K, which is similar to that of ZnSb. The heat capacity of ZnAs was measured between 2 and 300 K and partitioned into a Debye and two Einstein contributions with temperatures of θD = 234 K, θE1 = 95 K, and θE2 = 353 K. Heat capacity and thermal conductivity of ZnSb and ZnAs show very similar features, which possibly relates to their common electron-poor bonding properties.

20.
Chemistry ; 20(23): 7048-53, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24740648

RESUMEN

In this contribution, the solid-state low-temperature phase structure of [2,2]-paracyclophane is unambiguously characterised by single-crystal X-ray analysis. Additionally, a heat capacity measurement was undertaken, which proves the existence of a λ-type phase transition at 45 K, a transition that is connected with the formation of a secondary Cp/T feature at 60 K. The low-temperature phase (<45 K) crystallises in the lower symmetry space group P4n2, whereas the high-temperature phase (>60 K) crystallises in space group P4(2)/mnm. This proves what has been postulated both by experimental and theoretical chemists but has repeatedly been dismissed as speculation many times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...