Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636539

RESUMEN

Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.

2.
Struct Dyn ; 10(3): 034101, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37275629

RESUMEN

Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency contamination of our TR-SFX modes. By testing a range of methods, we show that timing errors comparable to the dynamical periods to be retrieved produce a smearing of dynamical features, hampering dynamics retrieval, but with no introduction of spurious components in the solution, when convergence criteria are met. Using model data, we are able to attribute the high-frequency contamination of low-order dynamical modes to the high levels of noise present in the data. Finally, we propose a method to handle missing observations that produces a substantial dynamics retrieval improvement from synthetic data with a significant static component. Reprocessing of the bR TR-SFX data using the improved method yields dynamical movies with strong isomerization signals compatible with previous findings.

3.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011209

RESUMEN

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Asunto(s)
Calmodulina , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico/fisiología , Microscopía por Crioelectrón , Calcio/metabolismo , Nucleótidos Cíclicos/farmacología , GMP Cíclico/metabolismo
4.
Acta Crystallogr D Struct Biol ; 79(Pt 3): 224-233, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876432

RESUMEN

Rhodopsin is a G-protein-coupled receptor that detects light and initiates the intracellular signalling cascades that underpin vertebrate vision. Light sensitivity is achieved by covalent linkage to 11-cis retinal, which isomerizes upon photo-absorption. Serial femtosecond crystallography data collected from rhodopsin microcrystals grown in the lipidic cubic phase were used to solve the room-temperature structure of the receptor. Although the diffraction data showed high completeness and good consistency to 1.8 Šresolution, prominent electron-density features remained unaccounted for throughout the unit cell after model building and refinement. A deeper analysis of the diffraction intensities uncovered the presence of a lattice-translocation defect (LTD) within the crystals. The procedure followed to correct the diffraction intensities for this pathology enabled the building of an improved resting-state model. The correction was essential to both confidently model the structure of the unilluminated state and interpret the light-activated data collected after photo-excitation of the crystals. It is expected that similar cases of LTD will be observed in other serial crystallography experiments and that correction will be required in a variety of systems.

5.
Nature ; 615(7954): 939-944, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949205

RESUMEN

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Asunto(s)
Rodopsina , Visión Ocular , Animales , Sitios de Unión/efectos de la radiación , Cristalografía , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Isomerismo , Fotones , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación , Retinaldehído/química , Retinaldehído/metabolismo , Retinaldehído/efectos de la radiación , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Factores de Tiempo , Visión Ocular/fisiología , Visión Ocular/efectos de la radiación
6.
Struct Dyn ; 9(4): 044101, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35991704

RESUMEN

Time-resolved serial femtosecond crystallography (TR-SFX) provides access to protein dynamics on sub-picosecond timescales, and with atomic resolution. Due to the nature of the experiment, these datasets are often highly incomplete and the measured diffracted intensities are affected by partiality. To tackle these issues, one established procedure is that of splitting the data into time bins, and averaging the multiple measurements of equivalent reflections within each bin. This binning and averaging often involve a loss of information. Here, we propose an alternative approach, which we call low-pass spectral analysis (LPSA). In this method, the data are projected onto the subspace defined by a set of trigonometric functions, with frequencies up to a certain cutoff. This approach attenuates undesirable high-frequency features and facilitates retrieving the underlying dynamics. A time-lagged embedding step can be included prior to subspace projection to improve the stability of the results with respect to the parameters involved. Subsequent modal decomposition allows to produce a low-rank description of the system's evolution. Using a synthetic time-evolving model with incomplete and partial observations, we analyze the LPSA results in terms of quality of the retrieved signal, as a function of the parameters involved. We compare the performance of LPSA to that of a range of other sophisticated data analysis techniques. We show that LPSA allows to achieve excellent dynamics reconstruction at modest computational cost. Finally, we demonstrate the superiority of dynamics retrieval by LPSA compared to time binning and merging, which is, to date, the most commonly used method to extract dynamical information from TR-SFX data.

7.
Science ; 375(6583): 845-851, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35113649

RESUMEN

Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.

8.
J Struct Biol ; 214(1): 107828, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971760

RESUMEN

The recently reported structure of the human CNGA1/CNGB1 CNG channel in the open state (Xue et al., 2021a) shows that one CNGA1 and one CNGB1 subunit do not open the central hydrophobic gate completely upon cGMP binding. This is different from what has been reported for CNGA homomeric channels (Xue et al., 2021b; Zheng et al., 2020). In seeking to understand how this difference is due to the presence of the CNGB1 subunit, we find that the deposited density map (Xue et al., 2021a) (EMDB 24465) contains an additional density not reported in the images of the original publication. This additional density fits well the structure of calmodulin (CaM), and it unambiguously connects the newly identified D-helix of CNGB1 to one of the CNGA1 helices (A1R) participating in the coiled-coil region. Interestingly, the CNGA1 subunit that engages in the interaction with this additional density is the one that, together with CNGB1, does not open completely the central gate. The sequence of the D-helix of CNGB1 contains a known CaM-binding site of exquisitely high affinity - named CaM2 (Weitz et al., 1998) -, and thus the presence of CaM in that region is not surprising. The mechanism through which CaM reduces currents across the membrane by acting on the native channel (Bauer, 1996; Hsu and Molday, 1993; Weitz et al., 1998) remains unclear. We suggest that the presence of CaM may explain the partially open central gate reported by Xue et al. (2021a). The structure of the open and closed states of the CNGA1/CNGB1 channel may be different with and without CaM present.


Asunto(s)
Calmodulina , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Sitios de Unión , Calmodulina/metabolismo , Microscopía por Crioelectrón , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Humanos , Células Fotorreceptoras Retinianas Bastones/metabolismo
9.
Nat Struct Mol Biol ; 29(1): 32-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969975

RESUMEN

In rod photoreceptors of the retina, the cyclic nucleotide-gated (CNG) channel is composed of three CNGA and one CNGB subunits, and it closes in response to light activation to generate an electrical signal that is conveyed to the brain. Here we report the cryo-EM structure of the closed state of the native rod CNG channel isolated from bovine retina. The structure reveals differences between CNGA1 and CNGB1 subunits. Three CNGA1 subunits are tethered at their C terminus by a coiled-coil region. The C-helix in the cyclic nucleotide-binding domain of CNGB1 features a different orientation from that in the three CNGA1 subunits. The arginine residue R994 of CNGB1 reaches into the ionic pathway and blocks the pore, thus introducing an additional gate, which is different from the central hydrophobic gate known from homomeric CNGA channels. These results address the long-standing question of how CNGB1 subunits contribute to the function of CNG channels in visual and olfactory neurons.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Células Fotorreceptoras Retinianas Bastones/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Secuencia Conservada , Canales Catiónicos Regulados por Nucleótidos Cíclicos/ultraestructura , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura
10.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810259

RESUMEN

G protein-coupled receptors (GPCRs) are one of the most important drug-target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward ß-arrestin-1 and ß-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting ß-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.


Asunto(s)
Prolina/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sitio Alostérico , Secuencias de Aminoácidos , Clonación Molecular , Dimerización , Células HEK293 , Humanos , Cinética , Ligandos , Péptidos/química , Ingeniería de Proteínas/métodos , Transducción de Señal , beta-Arrestinas/metabolismo
11.
J Chem Inf Model ; 61(11): 5692-5707, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34670076

RESUMEN

Dynamic hydrogen-bond networks provide proteins with structural plasticity required to translate signals such as ligand binding into a cellular response or to transport ions and larger solutes across membranes and, thus, are of central interest to understand protein reaction mechanisms. Here, we present C-Graphs, an efficient tool with graphical user interface that analyzes data sets of static protein structures or of independent numerical simulations to identify conserved, vs unique, hydrogen bonds and hydrogen-bond networks. For static structures, which may belong to the same protein or to proteins with different sequences, C-Graphs uses a clustering algorithm to identify sites of the hydrogen-bond network where waters are conserved among the structures. Using C-Graphs, we identify an internal protein-water hydrogen-bond network common to static structures of visual rhodopsins and adenosine A2A G protein-coupled receptors (GPCRs). Molecular dynamics simulations of a visual rhodopsin indicate that the conserved hydrogen-bond network from static structure can recruit dynamic hydrogen bonds and extend throughout most of the receptor. We release with this work the code for C-Graphs and its graphical user interface.


Asunto(s)
Rodopsina , Agua , Hidrógeno , Enlace de Hidrógeno , Simulación de Dinámica Molecular
12.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494099

RESUMEN

Ptychographic hard X-ray computed tomography (PXCT) is a recent method allowing imaging with quantitative electron-density contrast. Here, we imaged, at cryogenic temperature and without sectioning, cellular and subcellular structures of a chemically fixed and stained wild-type mouse retina, including axons and synapses, with complete isotropic 3D information over tens of microns. Comparison with tomograms of degenerative retina from a mouse model of retinitis pigmentosa illustrates the potential of this method for analyzing disease processes like neurodegeneration at sub-200 nm resolution. As a non-destructive imaging method, PXCT is very suitable for correlative imaging. Within the outer plexiform layer containing the photoreceptor synapses, we identified somatic synapses. We used a small region inside the X-ray-imaged sample for further high-resolution focused ion beam/scanning electron microscope tomography. The subcellular structures of synapses obtained with the X-ray technique matched the electron microscopy data, demonstrating that PXCT is a powerful scanning method for tissue volumes of more than 60 cells and sensitive enough for identification of regions as small as 200 nm, which remain available for further structural and biochemical investigations.


Asunto(s)
Retina , Tomografía , Animales , Imagenología Tridimensional , Ratones , Microscopía Electrónica , Sinapsis , Tomografía Computarizada por Rayos X
13.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326250

RESUMEN

G protein-coupled receptors (GPCRs) are important pharmaceutical targets for the treatment of a broad spectrum of diseases. Although there are structures of GPCRs in their active conformation with bound ligands and G proteins, the detailed molecular interplay between the receptors and their signaling partners remains challenging to decipher. To address this, we developed a high-sensitivity, high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method to interrogate the first stage of signal transduction. GPCR-G protein complex formation is detected as a proxy for the effect of ligands on GPCR conformation and on coupling selectivity. Over 70 ligand-GPCR-partner protein combinations were studied using as little as 1.25 pmol protein per sample. We determined the selectivity profile and binding affinities of three GPCRs (rhodopsin, beta-1 adrenergic receptor [ß1AR], and angiotensin II type 1 receptor) to engineered Gα-proteins (mGs, mGo, mGi, and mGq) and nanobody 80 (Nb80). We found that GPCRs in the absence of ligand can bind mGo, and that the role of the G protein C terminus in GPCR recognition is receptor-specific. We exemplified our quantification method using ß1AR and demonstrated the allosteric effect of Nb80 binding in assisting displacement of nadolol to isoprenaline. We also quantified complex formation with wild-type heterotrimeric Gαißγ and ß-arrestin-1 and showed that carvedilol induces an increase in coupling of ß-arrestin-1 and Gαißγ to ß1AR. A normalization strategy allows us to quantitatively measure the binding affinities of GPCRs to partner proteins. We anticipate that this methodology will find broad use in screening and characterization of GPCR-targeting drugs.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Opioides/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Arrestina/genética , Arrestina/metabolismo , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Opioides/química , Anticuerpos de Cadena Única , Pavos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
14.
Sci Adv ; 7(25)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34134983

RESUMEN

The human CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor (GPCR) that plays a major role in inflammation and is involved in cancer, HIV, and COVID-19. Despite its importance as a drug target, the molecular activation mechanism of CCR5, i.e., how chemokine agonists transduce the activation signal through the receptor, is yet unknown. Here, we report the cryo-EM structure of wild-type CCR5 in an active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist chemokines. The N terminus of agonist chemokines pushes onto specific structural motifs at the bottom of the orthosteric pocket that activate the canonical GPCR microswitch network. This activation mechanism differs substantially from other CC chemokine receptors that bind chemokines with shorter N termini in a shallow binding mode involving unique sequence signatures and a specialized activation mechanism.


Asunto(s)
Receptores CCR5/química , Receptores CCR5/metabolismo , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Receptores CCR5/agonistas , Receptores CCR5/genética , Transducción de Señal , Relación Estructura-Actividad
15.
J Struct Biol ; 213(2): 107699, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33545352

RESUMEN

G-protein coupled receptors (GPCRs) are among the most versatile signal transducers in the cell. Once activated, GPCRs sample a large conformational space and couple to G-proteins to initiate distinct signaling pathways. The dynamical behavior of GPCR-G-protein complexes is difficult characterize structurally, and it might hinder obtaining routine high-resolution density maps in single-particle reconstructions. Here, we used variability analysis on the rhodopsin-Gi-Fab16 complex cryo-EM dataset, and the results provide insights into the dynamic nature of the receptor-complex interaction. We compare the outcome of this analysis with recent results obtained on the cannabinoid-Gi- and secretin-Gs-receptor complexes. Despite differences related to the biochemical compositions of the three samples, a set of consensus movements emerges. We anticipate that systematic variability analysis on GPCR-G-protein complexes may provide useful information not only at the biological level, but also for improving the preparation of more stable samples for cryo-EM single-particle analysis.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Complejos Multiproteicos/química , Receptores Acoplados a Proteínas G/química , Bases de Datos de Proteínas , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Imagenología Tridimensional , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Complejos Multiproteicos/metabolismo , Conformación Proteica en Hélice alfa , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/química , Rodopsina/metabolismo
16.
J Biomol NMR ; 75(1): 25-38, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33501610

RESUMEN

G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey ß1-adrenergic receptor (ß1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-ß1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-ß1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Expresión Génica , Vectores Genéticos/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Estabilidad Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/aislamiento & purificación , Proteínas Recombinantes
17.
Molecules ; 25(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348734

RESUMEN

In this work, we examine methyl nuclear magnetic resonance (NMR) spectra of the methionine ε-[13CH3] labelled thermostabilized ß1 adrenergic receptor from turkey in association with a variety of different effectors, including mini-Gs and nanobody 60 (Nb60), which have not been previously studied in complex with ß1 adrenergic receptor (ß1AR) by NMR. Complexes with pindolol and Nb60 induce highly similar inactive states of the receptor, closely resembling the resting state conformational ensemble. We show that, upon binding of mini-Gs or nanobody 80 (Nb80), large allosteric changes throughout the receptor take place. The conformation of tß1AR stabilized by the native-like mini-Gs protein is highly similar to the conformation induced by the currently used surrogate Nb80. Interestingly, in both cases residual dynamics are present, which were not observed in the resting states. Finally, we reproduce a pharmaceutically relevant situation, where an antagonist abolishes the interaction of the receptor with the mini-G protein in a competitive manner, validating the functional integrity of our preparation. The presented system is therefore well suited for reproducing the individual steps of the activation cycle of a G protein-coupled receptor (GPCR) in vitro and serves as a basis for functional and pharmacological characterizations of more native-like systems in the future.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Pindolol/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Anticuerpos de Cadena Única/metabolismo , Anticuerpos de Dominio Único/inmunología , Sitios de Unión , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Turquía
18.
IUCrJ ; 7(Pt 6): 965-975, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33209311

RESUMEN

Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.

19.
PLoS One ; 15(11): e0242137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33180885

RESUMEN

The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.


Asunto(s)
Enfermedades Desmielinizantes/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Proteínas Priónicas/química , Receptores Acoplados a Proteínas G/agonistas , Animales , Línea Celular , Enfermedades Desmielinizantes/genética , Femenino , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Proteínas Priónicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Nervio Ciático/metabolismo , Transcriptoma
20.
Phys Chem Chem Phys ; 22(41): 24086-24096, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33079118

RESUMEN

G protein-coupled receptors (GPCRs) are a large and ubiquitous family of membrane receptors of great pharmacological interest. Cell-based assays are the primary tool for assessing GPCR interactions and activation but their design and intrinsic complexity limit their application. Biosensor-based assays that directly and specifically report GPCR-protein binding (e.g. arrestin or G protein) could provide a good alternative. We present an approach based on the stable immobilization of different arrestin-3 proteins (wild type, and two mutants, mutant X (arrestin-3 I386A) and mutant Y (arrestin-3 R393E)) via histidine tags on NTA(Ni2+)-coated sensors in a defined orientation. Using biolayer interferometry (BLI), surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D), we were able to follow the interaction between the different arrestin-3 proteins and a representative GPCR, jumping spider rhodopsin-1 (JSR1), in a label-free manner in real-time. The interactions were quantified as binding affinity, association and dissociation rate constants. The combination of surface-based biosensing methods indicated that JSR1 showed the strongest binding to arrestin mutant Y. Taken together, this work introduces direct label-free, biosensor-based screening approaches that can be easily adapted for testing interactions of proteins and other compounds with different GPCRs.


Asunto(s)
Proteínas Inmovilizadas/metabolismo , Rodopsina/metabolismo , Arrestina beta 2/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Técnicas Biosensibles , Proteínas Inmovilizadas/genética , Membrana Dobles de Lípidos/química , Mutación , Fosfatidilcolinas/química , Unión Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , Arañas/química , Resonancia por Plasmón de Superficie , Arrestina beta 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...