Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Mol Biol ; 28(2): 187-195, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30187585

RESUMEN

Drosophila suzukii is a significant pest of stone and small fruits. The genome of this species has been sequenced and manipulated by transposon-mediated transformation and CRISPR/Cas9 gene editing. These technologies open a variety of possibilities for functional genomics and genetic modifications that might improve biologically based population control strategies. Both of these approaches, however, would benefit from genome targeting that would avoid position effects and insertional mutations associated with random transposon vector insertions, and the limited DNA fragment insertion size allowed by gene editing. Here, we describe an efficient recombinase-mediated cassette exchange (RMCE) system for D. suzukii in which heterospecific lox recombination sites were integrated into the genome by transposon-mediated transformation and subsequently targeted for double recombination by a donor vector in the presence of Cre recombinase. Three loxN/lox2272 landing site lines have previously been created in D. suzukii, and quantitative PCR determined that polyubiquitin-regulated enhanced green fluorescent protein expression is least susceptible to position effect suppression in the 443_M26m1 line. We presume that RMCE target sites may also be inserted more specifically into the genome by homology-directed repair gene editing, thereby avoiding position effects and mutations, while eliminating restrictions on the size of donor constructs for subsequent insertion.


Asunto(s)
Drosophila/genética , Ingeniería Genética/métodos , Genómica/métodos , Animales , Femenino , Genoma de los Insectos , Masculino , Recombinasas
2.
Insect Mol Biol ; 25(4): 500-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27135433

RESUMEN

The sterile insect technique (SIT) involves the mass release of sterile males to suppress insect pest populations. SIT has been improved for larval pests by the development of strains for female-specific tetracycline-suppressible (Tet-off) embryonic lethal systems for male-only populations. Here we describe the extension of this approach to the Mexican fruit fly, Anastrepha ludens, using a Tet-off driver construct with the Tet-transactivator (tTA) under embryo-specific Anastrepha suspensa serendipity α (As-sry-α) promoter regulation. In the absence of tetracycline, tTA acts upon a Tet-response element linked to the pro-apoptotic cell death gene lethal effector, head involuation defective (hid), from A. ludens (Alhid(Ala2) ) that contains a sex-specific intron splicing cassette, resulting in female-specific expression of the lethal effector. Parental adults double-homozygous for the driver/effector vectors were expected to yield male-only progeny when reared on Tet-free diet, but a complete lack of oviposited eggs resulted for each of the three strains tested. Ovary dissection revealed nonvitellogenic oocytes in all strains that was reversible by feeding females tetracycline for 5 days after eclosion, resulting in male-only adults in one strain. Presumably the sry-α promoter exhibits prezygotic maternal expression as well as zygotic embryonic expression in A. ludens, resulting in a Tet-off sterility effect in addition to female-specific lethality.


Asunto(s)
Control Biológico de Vectores , Tephritidae/efectos de los fármacos , Tetraciclinas/farmacología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/fisiología , Antibacterianos/farmacología , Femenino , Genes Letales , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Reproducción/efectos de los fármacos , Tephritidae/genética , Tephritidae/crecimiento & desarrollo , Tephritidae/fisiología
3.
Transgenic Res ; 23(6): 1057-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24242193

RESUMEN

Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.


Asunto(s)
Exposición a Riesgos Ambientales/prevención & control , Ingeniería Genética , Organismos Modificados Genéticamente , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...