Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 23(2): 231-239, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27956748

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder often accompanied by intellectual disability, language impairment and medical co-morbidities. The heritability of autism is high and multiple genes have been implicated as causal. However, most of these genes have been identified in de novo cases. To further the understanding of familial autism, we performed whole-exome sequencing on five families in which second- and third-degree relatives were affected. By focusing on novel and protein-altering variants, we identified a small set of candidate genes. Among these, a novel private missense C1143F variant in the second intracellular loop of the voltage-gated sodium channel NaV1.7, encoded by the SCN9A gene, was identified in one family. Through electrophysiological analysis, we show that NaV1.7C1143F exhibits partial loss-of-function effects, resulting in slower recovery from inactivation and decreased excitability in cultured cortical neurons. Furthermore, for the same intracellular loop of NaV1.7, we found an excess of rare variants in a case-control variant-burden study. Functional analysis of one of these variants, M932L/V991L, also demonstrated reduced firing in cortical neurons. However, although this variant is rare in Caucasians, it is frequent in Latino population, suggesting that genetic background can alter its effects on phenotype. Although the involvement of the SCN1A and SCN2A genes encoding NaV1.1 and NaV1.2 channels in de novo ASD has previously been demonstrated, our study indicates the involvement of inherited SCN9A variants and partial loss-of-function of NaV1.7 channels in the etiology of rare familial ASD.


Asunto(s)
Trastorno Autístico/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Trastorno del Espectro Autista/genética , Estudios de Casos y Controles , Familia , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/fisiología , Fenotipo , Canales de Sodio/genética , Secuenciación del Exoma
2.
Spinal Cord ; 48(5): 393-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19841634

RESUMEN

STUDY DESIGN: Retrospective cross-sectional study with anonymous postal data collection. OBJECTIVE: Regaining the best possible mobility and independence is not only the focus of the rehabilitation process for individuals with spinal cord injury (SCI), but also represents an important criterion for the individual's quality of life (QoL). Therefore, if and to what extent physical exercise (PE) influences the QoL of individuals with SCI was investigated. SETTING: The period of investigation extended from September 2007 to January 2008. Data were acquired from the BG Trauma Hospital Hamburg database and the German Wheelchair Sport Federation databases. METHODS: Analysis of 277 questionnaires of individuals with acquired SCI between the age of 16 and 65 years with complete wheelchair dependency in everyday life and lesion level lower C5. RESULTS: In all, 51.5% of all individuals were reported being actively involved in sports as opposed to 48.5% individuals not participating in sports. Individuals actively involved in sports have higher employment rate than physically inactive individuals with SCI. PE was identified as the main influencing determinant of QoL. This was particularly within the physical and psychological dimensions. CONCLUSION: In discovering the potential of individuals with SCI for getting involved in PE, the improvement of physical and coordinative skills with interaction between individuals with SCI and external sport groups should be an inherent part of the rehabilitation process. Individuals not having access to PE should be given the opportunity to participate in wheelchair mobility courses. This may improve the adherence to PE of individuals with SCI in post-clinical settings.


Asunto(s)
Actividades Cotidianas/psicología , Terapia por Ejercicio/psicología , Aptitud Física/psicología , Calidad de Vida/psicología , Traumatismos de la Médula Espinal/psicología , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Rendimiento Atlético/psicología , Rendimiento Atlético/estadística & datos numéricos , Estudios Transversales , Deambulación Dependiente/psicología , Deambulación Dependiente/estadística & datos numéricos , Empleo/psicología , Empleo/estadística & datos numéricos , Terapia por Ejercicio/estadística & datos numéricos , Femenino , Estado de Salud , Encuestas Epidemiológicas , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud/métodos , Estudios Retrospectivos , Apoyo Social , Traumatismos de la Médula Espinal/fisiopatología , Deportes/psicología , Deportes/estadística & datos numéricos , Encuestas y Cuestionarios , Silla de Ruedas/psicología , Silla de Ruedas/estadística & datos numéricos
3.
Biochem Soc Trans ; 34(Pt 6): 1299-302, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17073806

RESUMEN

Currents through voltage-gated sodium channels drive action potential depolarization in neurons and other excitable cells. Smaller currents through these channels are key components of currents that control neuronal firing and signal integration. Changes in sodium current have profound effects on neuronal firing. Sodium channels are controlled by neuromodulators acting through phosphorylation of the channel by serine/threonine and tyrosine protein kinases. That phosphorylation requires specific molecular interaction of kinases and phosphatases with the channel molecule to form localized signalling complexes. Such localization is required for effective neurotransmitter-mediated regulation of sodium channels by protein kinase A. Analogous molecular complexes between sodium channels, kinases and other signalling molecules are expected to be necessary for specific and localized transmitter-mediated modulation of sodium channels by other protein kinases.


Asunto(s)
Neuronas/fisiología , Canales de Sodio/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cinética , Modelos Moleculares , Fosforilación , Fosfotirosina/metabolismo , Conformación Proteica , Proteína Quinasa C/metabolismo , Canales de Sodio/química
4.
Neuropharmacology ; 44(3): 413-22, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12604088

RESUMEN

Voltage-gated sodium channels are blocked by local anesthetic and anticonvulsant drugs. A receptor site for local anesthetics has been defined in transmembrane segment S6 in domain IV (IVS6) of the alpha subunit, but the anticonvulsant lamotrigine and related compounds have more complex structures than local anesthetics and may interact with additional amino acid residues. Apparent K(D) values for inactivated-state block of rat brain type IIA sodium channels expressed in Xenopus oocytes were 31.9 micro M, 17.3 micro M, 3.7 micro M and 10.3 micro M for lamotrigine and compounds 227c89, 4030w92 and 619c89, respectively. Compound 619c89 was the strongest frequency-dependent blocker, which correlated with higher affinity and a five-fold slower recovery from drug block compared to lamotrigine. Examination of lamotrigine block of mutant sodium channel alpha subunits, in which alanine had been substituted for each individual amino acid in IVS6, identified mutations I1760A, F1764A and Y1771A as causing the largest reductions in affinity (six-, seven- and 12-fold, respectively). The ratios of effects of these three mutations differed for compounds 227c89, 4030w92, and 619c89. The amino acid residues interacting with these pore-blocking drugs define a surface of IVS6 that is exposed to the pore and may rotate during gating.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Estructura Terciaria de Proteína/efectos de los fármacos , Agonistas de los Canales de Sodio , Triazinas/farmacología , Alanina/genética , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Cinética , Lamotrigina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Inhibidores de la Captación de Neurotransmisores/farmacología , Oocitos , Técnicas de Placa-Clamp , Piperazinas/farmacología , Estructura Terciaria de Proteína/fisiología , Pirimidinas/farmacología , Proteínas Recombinantes/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Factores de Tiempo , Triazinas/química , Xenopus
5.
Proc Natl Acad Sci U S A ; 98(26): 15348-53, 2001 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11742069

RESUMEN

Inactivation is a fundamental characteristic of Na(+) channels, and small changes cause skeletal muscle paralysis and myotonia, epilepsy, and cardiac arrhythmia. Brain Na(v)1.2a channels have faster inactivation than cardiac Na(v)1.5 channels, but minor differences in inactivation gate structure are not responsible. We constructed chimeras in which the C termini beyond the fourth homologous domains of Na(v)1.2a and Na(v)1.5 were exchanged. Replacing the C-terminal domain (CT) of Na(v)1.2a with that of Na(v)1.5 (Na(v)1.2/1.5CT) slowed inactivation at +40 mV approximately 2-fold, making it similar to Na(v)1.5. Conversely, replacing the CT of Na(v)1.5 with that of Na(v)1.2a (Nav1.5/1.2CT) accelerated inactivation, making it similar to Na(v)1.2a. Activation properties were unaffected. The voltage dependence of steady-state inactivation of Na(v)1.5 is 16 mV more negative than that of Na(v)1.2a. The steady-state inactivation curve of Na(v)1.2a was shifted +12 mV in Na(v)1.2/1.5CT, consistent with destabilization of the inactivated state. Conversely, Na(v)1.5/1.2CT was shifted -14 mV relative to Na(v)1.5, consistent with stabilization of the inactivated state. Although these effects of exchanging C termini were consistent with their effects on inactivation kinetics, they magnified the differences in the voltage dependence of inactivation between brain and cardiac channels rather than transferring them. Thus, other parts of these channels determine the basal difference in steady-state inactivation. Deletion of the distal half of either the Na(v)1.2 or Na(v)1.5 CTs accelerated open-state inactivation and negatively shifted steady-state inactivation. Thus, the C terminus has a strong influence on kinetics and voltage dependence of inactivation in brain Na(v)1.2 and cardiac Na(v)1.5 channels and is primarily responsible for their differing rates of channel inactivation.


Asunto(s)
Encéfalo/metabolismo , Miocardio/metabolismo , Canales de Sodio/fisiología , Línea Celular , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Eliminación de Secuencia , Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo
6.
J Gen Physiol ; 118(3): 291-302, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11524459

RESUMEN

beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.


Asunto(s)
Activación del Canal Iónico/fisiología , Venenos de Escorpión/farmacología , Canales de Sodio/fisiología , Arginina/fisiología , Línea Celular , Electrofisiología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Membranas/efectos de los fármacos , Membranas/metabolismo , Mutagénesis Sitio-Dirigida/genética , Mutagénesis Sitio-Dirigida/fisiología , Técnicas de Placa-Clamp , Canales de Sodio/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 98(8): 4699-704, 2001 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11296298

RESUMEN

N-type and P/Q-type Ca(2+) channels are inhibited by neurotransmitters acting through G protein-coupled receptors in a membrane-delimited pathway involving Gbetagamma subunits. Inhibition is caused by a shift from an easily activated "willing" (W) state to a more-difficult-to-activate "reluctant" (R) state. This inhibition can be reversed by strong depolarization, resulting in prepulse facilitation, or by protein kinase C (PKC) phosphorylation. Comparison of regulation of N-type Ca(2+) channels containing Cav2.2a alpha(1) subunits and P/Q-type Ca(2+) channels containing Ca(v)2.1 alpha(1) subunits revealed substantial differences. In the absence of G protein modulation, Ca(v)2.1 channels containing Ca(v)beta subunits were tonically in the W state, whereas Ca(v)2.1 channels without beta subunits and Ca(v)2.2a channels with beta subunits were tonically in the R state. Both Ca(v)2.1 and Ca(v)2.2a channels could be shifted back toward the W state by strong depolarization or PKC phosphorylation. Our results show that the R state and its modulation by prepulse facilitation, PKC phosphorylation, and Ca(v)beta subunits are intrinsic properties of the Ca(2+) channel itself in the absence of G protein modulation. A common allosteric model of G protein modulation of Ca(2+)-channel activity incorporating an intrinsic equilibrium between the W and R states of the alpha(1) subunits and modulation of that equilibrium by G proteins, Ca(v)beta subunits, membrane depolarization, and phosphorylation by PKC accommodates our findings. Such regulation will modulate transmission at synapses that use N-type and P/Q-type Ca(2+) channels to initiate neurotransmitter release.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Activación del Canal Iónico , Proteína Quinasa C/metabolismo , Regulación Alostérica
8.
Proc Natl Acad Sci U S A ; 98(8): 4705-9, 2001 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11296299

RESUMEN

N-type Ca(2+) channels can be inhibited by neurotransmitter-induced release of G protein betagamma subunits. Two isoforms of Ca(v)2.2 alpha1 subunits of N-type calcium channels from rat brain (Ca(v)2.2a and Ca(v)2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Ca(v)2.2b channels are in an easily activated "willing" (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Ca(v)2.2b channels to a difficult to activate "reluctant" (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Ca(v)2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Ca(v)2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Ca(v)2.2b to E as in Ca(v)2.2a converts Ca(v)2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Ca(v)2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Ca(v)2.2a by a voltage sensor-trapping mechanism. G protein betagamma subunits may produce reluctant channels by a similar molecular mechanism.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Activación del Canal Iónico , Sustitución de Aminoácidos , Canales de Calcio Tipo N/química , Línea Celular , Proteínas de Unión al GTP/metabolismo , Cinética , Isoformas de Proteínas/metabolismo
9.
J Biol Chem ; 276(1): 20-7, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11024055

RESUMEN

Mutations of amino acid residues in the inner two-thirds of the S6 segment in domain III of the rat brain type IIA Na(+) channel (G1460A to I1473A) caused periodic positive and negative shifts in the voltage dependence of activation, consistent with an alpha-helix having one face on which mutations to alanine oppose activation. Mutations in the outer one-third of the IIIS6 segment all favored activation. Mutations in the inner half of IIIS6 had strong effects on the voltage dependence of inactivation from closed states without effect on open-state inactivation. Only three mutations had strong effects on block by local anesthetics and anticonvulsants. Mutations L1465A and I1469A decreased affinity of inactivated Na(+) channels up to 8-fold for the anticonvulsant lamotrigine and its congeners 227c89, 4030w92, and 619c89 as well as for the local anesthetic etidocaine. N1466A decreased affinity of inactivated Na(+) channels for the anticonvulsant 4030w92 and etidocaine by 3- and 8-fold, respectively, but had no effect on affinity of the other tested compounds. Leu-1465, Asn-1466, and Ile-1469 are located on one side of the IIIS6 helix, and mutation of each caused a positive shift in the voltage dependence of activation. Evidently, these amino acid residues face the lumen of the pore, contribute to formation of the high-affinity receptor site for pore-blocking drugs, and are involved in voltage-dependent activation and coupling to closed-state inactivation.


Asunto(s)
Anestésicos Locales/farmacología , Anticonvulsivantes/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales de Sodio/química , Canales de Sodio/metabolismo , Sustitución de Aminoácidos/genética , Anestésicos Locales/metabolismo , Animales , Anticonvulsivantes/metabolismo , Sitios de Unión , Encéfalo , Electrofisiología , Etidocaína/metabolismo , Etidocaína/farmacología , Lamotrigina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Piperazinas/metabolismo , Piperazinas/farmacología , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ratas , Bloqueadores de los Canales de Sodio , Canales de Sodio/genética , Termodinámica , Triazinas/metabolismo , Triazinas/farmacología , Xenopus laevis
10.
Mol Cell Neurosci ; 18(5): 570-80, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11922146

RESUMEN

Brain sodium channels are complexes of a pore-forming alpha subunit with auxiliary beta subunits, which are transmembrane proteins that modulate alpha subunit function. The newly cloned beta3 subunit is shown to be expressed broadly in neurons in the central and peripheral nervous systems, but not in glia and most nonneuronal cells. Beta1, beta2, and beta3 subunits are coexpressed in many neuronal cell types, but are differentially expressed in ventromedial nucleus of the thalamus, brain stem nuclei, cerebellar Purkinje cells, and dorsal root ganglion cells. Coexpression of beta1, beta2, and beta3 subunits with Na(v)1.2a alpha subunits in the tsA-201 subclone of HEK293 cells shifts sodium channel activation and inactivation to more positive membrane potentials. However, beta3 is unique in causing increased persistent sodium currents. Because persistent sodium currents are thought to amplify summation of synaptic inputs, expression of this subunit would increase the excitability of specific groups of neurons to all of their inputs.


Asunto(s)
Membrana Celular/metabolismo , Sistema Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Potenciales de la Membrana/fisiología , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Estructura Terciaria de Proteína/fisiología , ARN Mensajero/metabolismo , Ratas , Canales de Sodio/genética
11.
Mol Pharmacol ; 58(6): 1264-70, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11093762

RESUMEN

The benzothiazepine diltiazem blocks ionic current through L-type Ca(2+) channels, as do the dihydropyridines (DHPs) and phenylalkylamines (PAs), but it has unique properties that distinguish it from these other drug classes. Wild-type L-type channels containing alpha(1CII) subunits, wild-type P/Q-type channels containing alpha(1A) subunits, and mutants of both channel types were transiently expressed in tsA-201 cells with beta(1B) and alpha(2)delta subunits. Whole-cell, voltage-clamp recordings showed that diltiazem blocks L-type Ca(2+) channels approximately 5-fold more potently than it does P/Q-type channels. Diltiazem blocked a mutant P/Q-type channel containing nine amino acid changes that made it highly sensitive to DHPs, with the same potency as L-type channels. Thus, amino acids specific to the L-type channel that confer DHP sensitivity in an alpha(1A) background also increase sensitivity to diltiazem. Analysis of single amino acid mutations in domains IIIS6 and IVS6 of alpha(1CII) subunits confirmed the role of these L-type-specific amino acid residues in diltiazem block, and also indicated that Y1152 of alpha(1CII), an amino acid critical to both DHP and PA block, does not play a role in diltiazem block. Furthermore, T1039 and Y1043 in domain IIIS5, which are both critical for DHP block, are not involved in block by diltiazem. Conversely, three amino acid residues (I1150, M1160, and I1460) contribute to diltiazem block but have not been shown to affect DHP or PA block. Thus, binding of diltiazem to L-type Ca(2+) channels requires residues that overlap those that are critical for DHP and PA block as well as residues unique to diltiazem.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/fisiología , Diltiazem/farmacología , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Células Cultivadas , Secuencia Conservada , Electrofisiología , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Pruebas de Mutagenicidad , Conformación Proteica , Homología de Secuencia de Aminoácido
12.
Proc Natl Acad Sci U S A ; 97(22): 12334-8, 2000 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-11035786

RESUMEN

We have investigated the mechanism underlying the modulation of the cardiac L-type Ca(2+) current by protein kinase C (PKC). Using the patch-clamp technique, we found that PKC activation by 4-alpha-phorbol 12-myristate 13-acetate (PMA) or rac-1-oleyl-2-acetylglycerol (OAG) caused a substantial reduction in Ba(2+) current through Ca(v)1.2 channels composed of alpha(1)1.2, beta(1b), and alpha(2)delta(1) subunits expressed in tsA-201 cells. In contrast, Ba(2+) current through a cloned brain isoform of the Ca(v)1.2 channel (rbC-II) was unaffected by PKC activation. Two potential sites of PKC phosphorylation are present at positions 27 and 31 in the cardiac form of Ca(v)1.2, but not in the brain form. Deletion of N-terminal residues 2-46 prevented PKC inhibition. Conversion of the threonines at positions 27 and 31 to alanine also abolished the PKC sensitivity of Ca(v)1.2. Mutant Ca(v)1.2 channels in which the threonines were converted singly to alanines were also insensitive to PKC modulation, suggesting that phosphorylation of both residues is required for PKC-dependent modulation. Consistent with this, mutating each of the threonines individually to aspartate in separate mutants restored the PKC sensitivity of Ca(v)1.2, indicating that a change in net charge by phosphorylation of both sites is responsible for inhibition. Our results define the molecular basis for inhibition of cardiac Ca(v)1.2 channels by the PKC pathway.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Línea Celular , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutagénesis , Fosforilación , Homología de Secuencia de Aminoácido , Treonina/metabolismo
13.
J Neurosci ; 20(18): 6830-8, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10995827

RESUMEN

Trains of action potentials cause Ca(2+)-dependent facilitation and inactivation of presynaptic P/Q-type Ca(2+) channels that can alter synaptic efficacy. A potential mechanism for these effects involves calmodulin, which associates in a Ca(2+)-dependent manner with the pore-forming alpha(1A) subunit. Here, we report that Ca(2+) and calmodulin dramatically enhance inactivation and facilitation of P/Q-type Ca(2+) channels containing the auxiliary beta(2a) subunit compared with their relatively small effects on channels with beta(1b). Tetanic stimulation causes an initial enhancement followed by a gradual decline in P/Q-type Ca(2+) currents over time. Recovery of Ca(2+) currents from facilitation and inactivation is relatively slow (30 sec to 1 min). These effects are strongly inhibited by high intracellular BAPTA, replacement of extracellular Ca(2+) with Ba(2+), and a calmodulin inhibitor peptide. The Ca(2+)/calmodulin-dependent facilitation and inactivation of P/Q-type Ca(2+) channels observed here are consistent with the behavior of presynaptic Ca(2+) channels in neurons, revealing how dual feedback regulation of P/Q-type channels by Ca(2+) and calmodulin could contribute to activity-dependent synaptic plasticity.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Ácido Egtácico/análogos & derivados , Guanosina Difosfato/análogos & derivados , Potenciales de Acción/efectos de los fármacos , Bario/farmacología , Calcio/farmacología , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio Tipo N/genética , Calmodulina/farmacología , Línea Celular , Quelantes/farmacología , Ácido Egtácico/farmacología , Estimulación Eléctrica , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Guanosina Difosfato/farmacología , Humanos , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Tionucleótidos/farmacología , Transfección
14.
Proc Natl Acad Sci U S A ; 97(9): 4944-9, 2000 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-10781102

RESUMEN

We have synthesized a new benzomorphan derivative, 2R-[2alpha,3(S*), 6alpha]-1,2,3,4,5,6-hexahydro-6,11, 11-trimethyl-3-[2-(phenylmethoxy)propyl]-2, 6-methano-3-benzazocin-10-ol hydrochloride (BIII 890 CL), which displaced [(3)H]batrachotoxinin A-20alpha-benzoate from neurotoxin receptor site 2 of the Na(+) channel in rat brain synaptosomes (IC(50) = 49 nM), but exhibited only low affinity for 65 other receptors and ion channels. BIII 890 CL inhibited Na(+) channels in cells transfected with type IIA Na(+) channel alpha subunits and shifted steady-state inactivation curves to more negative potentials. The IC(50) value for the inactivated Na(+) channel was much lower (77 nM) than for Na(+) channels in the resting state (18 microM). Point mutations F1764A and Y1771A in transmembrane segment S6 in domain IV of the alpha subunit reduced the voltage- and frequency-dependent block, findings which suggest that BIII 890 CL binds to the local anesthetic receptor site in the pore. BIII 890 CL inhibited veratridine-induced glutamate release in brain slices, as well as glutamate release and neurotoxicity in cultured cortical neurons. BIII 890 CL (3-30 mg/kg s.c.) reduced lesion size in mice and rats when administered 5 min after permanent focal cerebral ischemia at doses that did not impair motor coordination. In contrast to many other agents, BIII 890 CL was neuroprotective in both cortical and subcortical regions of the rat brain. Our results demonstrate that BIII 890 CL is a potent, selective, and highly use-dependent Na(+) channel blocker that protects brain tissue from the deleterious effects of focal cerebral ischemia in rodents.


Asunto(s)
Benzomorfanos/farmacología , Encéfalo/fisiología , Ataque Isquémico Transitorio/fisiopatología , Fármacos Neuroprotectores/farmacología , Bloqueadores de los Canales de Sodio , Sinaptosomas/fisiología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Unión Competitiva , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Ácido Glutámico/metabolismo , Ataque Isquémico Transitorio/prevención & control , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Proteínas Recombinantes/metabolismo , Canales de Sodio/química , Canales de Sodio/fisiología , Transfección , Veratridina/farmacología
15.
Nat Neurosci ; 3(5): 437-44, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10769382

RESUMEN

Voltage-gated sodium channels in brain neurons were found to associate with receptor protein tyrosine phosphatase beta (RPTPbeta) and its catalytically inactive, secreted isoform phosphacan, and this interaction was regulated during development. Both the extracellular domain and the intracellular catalytic domain of RPTPbeta interacted with sodium channels. Sodium channels were tyrosine phosphorylated and were modulated by the associated catalytic domains of RPTPbeta. Dephosphorylation slowed sodium channel inactivation, positively shifted its voltage dependence, and increased whole-cell sodium current. Our results define a sodium channel signaling complex containing RPTPbeta, which acts to regulate sodium channel modulation by tyrosine phosphorylation.


Asunto(s)
Activación del Canal Iónico , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Canales de Sodio/metabolismo , Animales , Sitios de Unión , Encéfalo/citología , Anhidrasas Carbónicas/química , Dominio Catalítico , Línea Celular , Membrana Celular/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Conductividad Eléctrica , Humanos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química , Ratas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sodio/metabolismo , Canales de Sodio/química , Canales de Sodio/genética , Transfección
16.
J Biol Chem ; 274(46): 32638-46, 1999 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-10551818

RESUMEN

The type IIA voltage-gated sodium Na(+) channel from rat brain is composed of a large, pore-forming alpha subunit and the auxiliary subunits beta1 and beta2. When expressed in Xenopus oocytes, the beta1 subunit modulates the gating properties of the type IIA alpha subunit, resulting in acceleration of both inactivation and recovery from inactivation and in a negative shift in the voltage dependence of fast inactivation. The beta1 subunit is composed of an extracellular domain with a single immunoglobulin-like fold, a single transmembrane segment, and a small intracellular domain. A series of chimeras with exchanges of domains between the Na(+) channel beta1 and beta2 subunits and between beta1 and the structurally related protein myelin P0 were constructed and analyzed by two-microelectrode voltage clamp in Xenopus oocytes. Only chimeras containing the beta1 extracellular domain were capable of beta1-like modulation of Na(+) channel gating. Neither the transmembrane segment nor the intracellular domain was required for modulation, although mutation of Glu(158) within the transmembrane domain altered the voltage dependence of steady-state inactivation. A truncated beta1 subunit was engineered in which the beta1 extracellular domain was fused to a recognition sequence for attachment of a glycosylphosphatidylinositol membrane anchor. The beta1(ec)-glycosylphosphatidylinositol protein fully reproduced modulation of Na(+) channel inactivation and recovery from inactivation by wild-type beta1. Our findings demonstrate that extracellular domain of the beta1 subunit is both necessary and sufficient for the modulation of Na(+) channel gating.


Asunto(s)
Activación del Canal Iónico/genética , Canales de Sodio/genética , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microinyecciones , Datos de Secuencia Molecular , Mutación , Proteína P0 de la Mielina/genética , Oocitos , Técnicas de Placa-Clamp , ARN Mensajero/genética , Ratas , Proteínas Recombinantes de Fusión/genética , Canales de Sodio/química , Xenopus
17.
J Biol Chem ; 274(46): 32647-54, 1999 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-10551819

RESUMEN

Voltage-gated sodium channels consist of a pore-forming alpha subunit associated with beta1 subunits and, for brain sodium channels, beta2 subunits. Although much is known about the structure and function of the alpha subunit, there is little information on the functional role of the 16 extracellular loops. To search for potential functional activities of these extracellular segments, chimeras were studied in which an individual extracellular loop of the rat heart (rH1) alpha subunit was substituted for the corresponding segment of the rat brain type IIA (rIIA) alpha subunit. In comparison with rH1, wild-type rIIA alpha subunits are characterized by more positive voltage-dependent activation and inactivation, a more prominent slow gating mode, and a more substantial shift to the fast gating mode upon coexpression of beta1 subunits in Xenopus oocytes. When alpha subunits were expressed alone, chimeras with substitutions from rH1 in five extracellular loops (IIS5-SS1, IISS2-S6, IIIS1-S2, IIISS2-S6, and IVS3-S4) had negatively shifted activation, and chimeras with substitutions in three of these (IISS2-S6, IIIS1-S2, and IVS3-S4) also had negatively shifted steady-state inactivation. rIIA alpha subunit chimeras with substitutions from rH1 in five extracellular loops (IS5-SS1, ISS2-S6, IISS2-S6, IIIS1-S2, and IVS3-S4) favored the fast gating mode. Like wild-type rIIA alpha subunits, all of the chimeric rIIA alpha subunits except chimera IVSS2-S6 were shifted almost entirely to the fast gating mode when coexpressed with beta1 subunits. In contrast, substitution of extracellular loop IVSS2-S6 substantially reduced the effectiveness of beta1 subunits in shifting rIIA alpha subunits to the fast gating mode. Our results show that multiple extracellular loops influence voltage-dependent activation and inactivation and gating mode of sodium channels, whereas segment IVSS2-S6 plays a dominant role in modulation of gating by beta1 subunits. Evidently, several extracellular loops are important determinants of sodium channel gating and modulation.


Asunto(s)
Activación del Canal Iónico/genética , Canales de Sodio/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microinyecciones , Datos de Secuencia Molecular , Miocardio/metabolismo , Oocitos , Técnicas de Placa-Clamp , ARN Mensajero/genética , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Canales de Sodio/química , Xenopus
18.
Mol Pharmacol ; 56(6): 1238-44, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10570051

RESUMEN

Mexiletine is a class I antiarrhythmic drug with neuroprotective effects in models of brain ischemia attributable to inhibition of brain sodium channels. We compared effects of R-mexiletine on wild-type and mutant rat brain (rbIIA) and heart (rh1) sodium channel alpha-subunits transiently expressed in tsA-201 cells. R-mexiletine induced tonic and frequency-dependent block and bound with a 26-fold (brain) or 35-fold (heart) higher affinity to inactivated sodium channels. Affinities of both resting and inactivated channels for R-mexiletine block were approximately 2-fold higher for heart than for brain channels. Mutations in transmembrane segment IVS6 of heart (rhF1762A) and brain (rbF1764A and rbY1771A) channels, which reduce block by other local anesthetics, reduced high-affinity block of inactivated channels and frequency-dependent block of open channels by R-mexiletine and abolished the difference in affinity between brain and heart sodium channels. Unlike previous local anesthetics studied, the strongest effect was observed for mutation rbY1771A. Comparison of mutations of the homologous phenylalanine residue in brain and heart channels showed striking differences in the effects of the mutations. rbF1764A reduced drug block by slowing R-mexiletine binding to inactivated channels, whereas rhF1762A reduced block by increasing the rate of dissociation from inactivated and resting channels. Thus, rbF1764/rhF1762 is a critical determinant of affinity and tissue-specific differences in mexiletine block of brain and heart sodium channels, but its role in drug interaction differs in these two channel isoforms.


Asunto(s)
Antiarrítmicos/farmacología , Encéfalo/efectos de los fármacos , Corazón/efectos de los fármacos , Mexiletine/farmacología , Bloqueadores de los Canales de Sodio , Anestésicos Locales/farmacología , Animales , Encéfalo/fisiología , Células Cultivadas , Electrofisiología , Corazón/fisiología , Humanos , Cinética , Mutación , Ratas , Canales de Sodio/genética , Canales de Sodio/metabolismo , Canales de Sodio/fisiología , Transfección
20.
J Neurosci ; 19(17): RC21, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10460275

RESUMEN

Activation of D1-like dopamine (DA) receptors reduces peak Na(+) current in acutely isolated hippocampal neurons via a modulatory mechanism involving phosphorylation of the Na(+) channel alpha subunit by cAMP-dependent protein kinase (PKA). Peak Na(+) current is reduced 20-50% in the presence of the D1 agonist SKF 81297 or the PKA activator Sp-5,6-dichloro-l-beta-d-ribofuranosyl benzimidazole-3',5'-cyclic monophosphorothionate (cBIMPS). Co-immunoprecipitation experiments show that Na(+) channels are associated with PKA and A-kinase-anchoring protein 15 (AKAP-15), and immunocytochemical labeling reveals their co-localization in the cell bodies and proximal dendrites of hippocampal pyramidal neurons. Anchoring of PKA near the channel by an AKAP, which binds the RII alpha regulatory subunit, is necessary for Na(+) channel modulation in acutely dissociated hippocampal pyramidal neurons. Intracellular dialysis with the anchoring inhibitor peptides Ht31 from a human thyroid AKAP and AP2 from AKAP-15 eliminated the modulation of the Na(+) channel by the D1-agonist SKF 81297 and the PKA activator cBIMPS. In contrast, dialysis with the inactive proline-substituted control peptides Ht31-P and AP2-P had little effect on the D1 and PKA modulation. Therefore, we conclude that modulation of the Na(+) channel by activation of D1-like DA receptors requires targeted localization of PKA near the channel to achieve phosphorylation of the alpha subunit and to modify the functional properties of the channel.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Receptores de Dopamina D1/fisiología , Canales de Sodio/fisiología , Proteínas de Anclaje a la Quinasa A , Animales , Activación Enzimática , Hipocampo/citología , Hipocampo/enzimología , Humanos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Fosforilación , Pruebas de Precipitina , Células Piramidales/enzimología , Células Piramidales/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...