Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8043-8057, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363862

RESUMEN

We investigate the electronic structure of aromatic radical anions in the solution phase employing a combination of liquid-jet (LJ) photoelectron (PE) spectroscopy measurements and electronic structure calculations. By using recently developed protocols, we accurately determine the vertical ionization energies of valence electrons of both the solvent and the solute molecules. In particular, we first characterize the pure solvent of tetrahydrofuran (THF) by LJ-PE measurements in conjunction with ab initio molecular dynamics simulations and G0W0 calculations. Next, we determine the electronic structure of neutral naphthalene (Np) and benzophenone (Bp) as well as their radical anion counterparts Np- and Bp- in THF. Wherever feasible, we performed orbital assignments of the measured PE features of the aromatic radical anions, with comparisons to UV-vis absorption spectra of the corresponding neutral molecules being instrumental in rationalizing the assignments. Analysis of the electronic structure differences between the neutral species and their anionic counterparts provides understanding of the primarily electrostatic stabilization of the radical anions in solution. Finally, we obtain a very good agreement of the reduction potentials extracted from the present LJ-PES measurements of Np- and Bp- in THF with previous electrochemical data from cyclic voltammetry measurements. In this context, we discuss how the choice of solvent holds significant implications for optimizing conditions for the Birch reduction process, wherein aromatic radical anions play crucial roles as reactive intermediates.

2.
J Am Chem Soc ; 144(48): 22093-22100, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36442139

RESUMEN

Birch reduction is a time-proven way to hydrogenate aromatic hydrocarbons (such as benzene), which relies on the reducing power of electrons released from alkali metals into liquid ammonia. We have succeeded to characterize the key intermediates of the Birch reduction process─the solvated electron and dielectron and the benzene radical anion─using cyclic voltammetry and photoelectron spectroscopy, aided by electronic structure calculations. In this way, we not only quantify the electron binding energies of these species, which are decisive for the mechanism of the reaction, but also use Birch reduction as a case study to directly connect the two seemingly unrelated experimental techniques.

3.
J Am Chem Soc ; 144(17): 7790-7795, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35471014

RESUMEN

We present chemical kinetics measurements of the luminol oxidation chemiluminescence (CL) reaction at the interface between two aqueous solutions, using liquid jet technology. Free-flowing liquid microjets are a relatively recent development that have found their way into a growing number of applications in spectroscopy and dynamics. A variant thereof, called flat-jet, is obtained when two cylindrical jets of a liquid are crossed, leading to a chain of planar leaf-shaped structures of the flowing liquid. We here show that in the first leaf of this chain, the fluids do not exhibit turbulent mixing, providing a clean interface between the liquids from the impinging jets. We also show, using the example of the luminol CL reaction, how this setup can be used to obtain kinetics information from friction-less flow and by circumventing the requirement for rapid mixing by intentionally suppressing all turbulent mixing and instead relying on diffusion.


Asunto(s)
Luminol , Agua , Difusión , Cinética , Agua/química
4.
J Phys Chem B ; 126(1): 229-238, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34935378

RESUMEN

We report valence band photoelectron spectroscopy measurements of gas-phase and liquid-phase benzene as well as those of benzene dissolved in liquid ammonia, complemented by electronic structure calculations. The origins of the sizable gas-to-liquid-phase shifts in electron binding energies deduced from the benzene valence band spectral features are quantitatively characterized in terms of the Born-Haber solvation model. This model also allows to rationalize the observation of almost identical shifts in liquid ammonia and benzene despite the fact that the former solvent is polar while the latter is not. For neutral solutes like benzene, it is the electronic polarization response determined by the high frequency dielectric constant of the solvent, which is practically the same in the two liquids, that primarily determines the observed gas-to-liquid shifts.


Asunto(s)
Amoníaco , Benceno , Electrones , Espectroscopía de Fotoelectrones , Solventes
5.
Nature ; 595(7869): 673-676, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321671

RESUMEN

Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2-4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6-9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12-14. We found that the explosive behaviour of the water-alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10-4 millibar onto liquid sodium-potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021 electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies.

6.
Science ; 368(6495): 1086-1091, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32499436

RESUMEN

Experimental studies of the electronic structure of excess electrons in liquids-archetypal quantum solutes-have been largely restricted to very dilute electron concentrations. We overcame this limitation by applying soft x-ray photoelectron spectroscopy to characterize excess electrons originating from steadily increasing amounts of alkali metals dissolved in refrigerated liquid ammonia microjets. As concentration rises, a narrow peak at ~2 electron volts, corresponding to vertical photodetachment of localized solvated electrons and dielectrons, transforms continuously into a band with a sharp Fermi edge accompanied by a plasmon peak, characteristic of delocalized metallic electrons. Through our experimental approach combined with ab initio calculations of localized electrons and dielectrons, we obtain a clear picture of the energetics and density of states of the ammoniated electrons over the gradual transition from dilute blue electrolytes to concentrated bronze metallic solutions.

7.
Rev Sci Instrum ; 91(4): 043101, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357686

RESUMEN

A versatile, temperature controlled apparatus is presented, which generates deeply cooled liquid microjets of condensed gases, expelling them via a small aperture into vacuum for use in photoelectron spectroscopy (PES). The functionality of the design is demonstrated by temperature- and concentration-dependent PES measurements of liquid ammonia and solutions of KI and NH4I in liquid ammonia. The experimental setup is not limited to the usage of liquid ammonia solutions solely.

8.
Phys Rev Lett ; 116(15): 153001, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27127965

RESUMEN

An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

9.
J Chem Phys ; 142(20): 204310, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26026450

RESUMEN

We present an experimental and theoretical investigation of rotationally inelastic transitions of OH, prepared in the X(2)Π, v = 0, j = 3/2 F1f level, in collisions with molecular hydrogen (H2 and D2). In a crossed beam experiment, the OH radicals were state selected and velocity tuned over the collision energy range 75-155 cm(-1) using a Stark decelerator. Relative parity-resolved state-to-state integral cross sections were determined for collisions with normal and para converted H2. These cross sections, as well as previous OH-H2 measurements at 595 cm(-1) collision energy by Schreel and ter Meulen [J. Chem. Phys. 105, 4522 (1996)], and OH-D2 measurements for collision energies 100-500 cm(-1) by Kirste et al. [Phys. Rev. A 82, 042717 (2010)], were compared with the results of quantum scattering calculations using recently determined ab initio potential energy surfaces [Ma et al., J. Chem. Phys. 141, 174309 (2014)]. Good agreement between the experimental and computed relative cross sections was found, although some structure seen in the OH(j = 3/2 F1f → j = 5/2 F1e) + H2(j = 0) cross section is not understood.

10.
Science ; 338(6110): 1060-3, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23180857

RESUMEN

Whereas atom-molecule collisions have been studied with complete quantum-state resolution, interactions between two state-selected molecules have proven much harder to probe. Here, we report the measurement of state-resolved inelastic scattering cross sections for collisions between two open-shell molecules that are both prepared in a single quantum state. Stark-decelerated hydroxyl (OH) radicals were scattered with hexapole-focused nitric oxide (NO) radicals in a crossed-beam configuration. Rotationally and spin-orbit inelastic scattering cross sections were measured on an absolute scale for collision energies between 70 and 300 cm(-1). These cross sections show fair agreement with quantum coupled-channels calculations using a set of coupled model potential energy surfaces based on ab initio calculations for the long-range nonadiabatic interactions and a simplistic short-range interaction. This comparison reveals the crucial role of electrostatic forces in complex molecular collision processes.


Asunto(s)
Radical Hidroxilo/química , Óxido Nítrico/química , Teoría Cuántica , Electricidad Estática
11.
Phys Rev Lett ; 105(13): 133203, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-21230771

RESUMEN

We report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component k(z) of the incident wave vector of the atom the reflection probability is found to be a function of k(z) only. This behavior is explained by quantum reflection at the attractive branch of the Casimir-van der Waals interaction potential. For larger values of k(z) the overall reflection probability decreases rapidly and is found to also depend on the parallel component k(x) of the wave vector. The material specific k(x) dependence for this classic reflection at the repulsive branch of the potential is discussed in terms of an averaging out of the surface roughness under grazing incidence conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA