Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786695

RESUMEN

Nectarines can be affected by many diseases, resulting in significant production losses. Natural products, such as essential oils (EOs), are promising alternatives to pesticides to control storage rots. This work aimed to test the efficacy of biofumigation with EOs in the control of nectarine postharvest diseases while also evaluating the effect on the quality parameters (firmness, total soluble solids, and titratable acidity) and on the fruit fungal microbiome. Basil, fennel, lemon, oregano, and thyme EOs were first tested in vitro at 0.1, 0.5, and 1.0% concentrations to evaluate their inhibition activity against Monilinia fructicola. Subsequently, an in vivo screening trial was performed by treating nectarines inoculated with M. fructicola, with the five EOs at 2.0% concentration by biofumigation, performed using slow-release diffusers placed inside the storage cabinets. Fennel, lemon, and basil EOs were the most effective after storage and were selected to be tested in efficacy trials using naturally infected nectarines. After 28 days of storage, all treatments showed a significant rot reduction compared to the untreated control. Additionally, no evident phytotoxic effects were observed on the treated fruits. EO vapors did not affect the overall quality of the fruits but showed a positive effect in reducing firmness loss. Metabarcoding analysis showed a significant impact of tissue, treatment, and sampling time on the fruit microbiome composition. Treatments were able to reduce the abundance of Monilinia spp., but basil EO favored a significant increase in Penicillium spp. Moreover, the abundance of other fungal genera was found to be modified.

2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769223

RESUMEN

Biofumigation with slow-release diffusers of essential oils (EOs) of basil, oregano, savoury, thyme, lemon, and fennel was assessed for the control of blue mould of apples, caused by Penicillium expansum. In vitro, the ability of the six EOs to inhibit the mycelial growth was evaluated at concentrations of 1.0, 0.5, and 0.1%. EOs of thyme, savoury, and oregano, at all three concentrations, and basil, at 1.0 and 0.5%, were effective in inhibiting the mycelial growth of P. expansum. In vivo, disease incidence and severity were evaluated on 'Opal' apples artificially inoculated with the pathogen and treated at concentrations of 1.0% and 0.5% of EOs. The highest efficacy in reducing blue mould was observed with EOs of lemon and oregano at 1.0% after 60 days of storage at 1 ± 1 °C (incidence of rot, 3 and 1%, respectively) and after a further 14 days of shelf-life at 15 ± 1 °C (15 and 17%). Firmness, titratable acidity, and total soluble solids were evaluated at harvest, after cold storage, and after shelf-life. Throughout the storage period, no evident phytotoxic effects were observed. The EOs used were characterised through GC-MS to analyse their compositions. Moreover, the volatile organic compounds (VOCs) present in the cabinets were characterised during storage using the SPME-GC-MS technique. The antifungal effects of EOs were confirmed both in vitro and in vivo and the possible mechanisms of action were hypothesised. High concentrations of antimicrobial and antioxidant compounds in the EOs explain the efficacy of biofumigation in postharvest disease control. These findings provide new insights for the development of sustainable strategies for the management of postharvest diseases and the reduction of fruit losses during storage.


Asunto(s)
Malus , Aceites Volátiles , Penicillium , Aceites Volátiles/farmacología , Antifúngicos/farmacología
3.
Microorganisms ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677508

RESUMEN

Since 2012, the kiwifruit vine decline syndrome (KVDS) has progressively compromised Italian kiwifruit orchards. Different abiotic and biotic factors have been associated with the establishment and development of KVDS. During monitoring of orchards affected by KVDS in north-western Italy during 2016-2019, 71 Phytopythium spp. were isolated. Based on maximum likelihood concatenated phylogeny on the ITS1-5.8S-ITS2 region of the rDNA, large subunit rDNA, and cytochrome oxidase I, isolates were identified as P. vexans (52), P. litorale (10), P. chamaehyphon (7) and P. helicoides (2). Phytopythium litorale and P. helicoides are reported for the first time as agents of KVDS in Italy. To demonstrate pathogenicity and fulfil Koch's postulates, representative isolates of P. vexans, P. litorale, P. chamaehyphon and P. helicoides were inoculated in potted plants. In these trials, waterlogging was applied to stress plant with a temporary anoxia and to favour the production of infective zoospores by the oomycetes. In experiments in vitro, the four species showed the highest growth at 25-30 °C, depending on the media used. P. helicoides was able to grow also at 40 °C. The four species were able to grow in vitro at a pH ranging from 5.0 to 8.0, showing that pH had less effect on growth than temperature. The present study suggests a strong role of different species of Phytopythium in the establishment and development of KVDS. Phytopythium spp. could be favoured by the average increase in soil temperatures during summer, associated with global warming.

4.
Phytopathology ; 113(2): 309-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36167507

RESUMEN

Brown and black spots, caused by Stemphylium and Alternaria species, are important fungal diseases affecting European pear (Pyrus communis) in orchards. Both fungal genera cause similar symptoms, which could favor misidentification, but Alternaria spp. are increasingly reported due to the changing climatic conditions. In this study, Alternaria spp. were isolated from symptomatic leaves and fruits of European pear, and their pathogenicity was evaluated on pear fruits from cultivar Abate Fétel, and molecular and chemical characterization were performed. Based on maximum likelihood phylogenetic analysis, 15 of 46 isolates were identified as A. arborescens species complex (AASC), 27 as A. alternata, and four as Alternaria sp. Both species were isolated from mature fruits and leaves. In pathogenicity assays on pear fruits, all isolates reproduced the symptoms observed in the field, by both wound inoculation and direct penetration. All but one isolate produced Alternaria toxins on European pears, including tenuazonic acid and alternariol (89.1% of the isolates), alternariol monomethyl ether (89.1%), altertoxin I (80.4%), altenuene (50.0%), and tentoxin (2.2%). These isolates also produced at least two mycotoxins, and 43.5% produced four mycotoxins, with an average total concentration of the Alternaria toxins exceeding 7.58 × 106 ng/kg. Our data underline the potential risks for human health related to the high mycotoxin content found on fruits affected by black spot. This study also represents the first report of AASC as an agent of black spot on European pear in Italy.


Asunto(s)
Micotoxinas , Pyrus , Humanos , Frutas/microbiología , Alternaria/genética , Pyrus/microbiología , Filogenia , Virulencia , Enfermedades de las Plantas/microbiología
5.
J Fungi (Basel) ; 9(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36675843

RESUMEN

Botrytis cinerea is the causal agent of grey mould rot of apples. The efficacy of biofumigation with thyme (Thymus vulgaris), savoury (Satureja montana), and basil (Ocimum basilicum) essential oils (EOs) at 1%, 0.5%, and 0.1% concentrations were tested against B. cinerea. In vitro, the results showed 100% growth inhibition at 1% concentration for all oils. Subsequent biofumigation experiments on apples of cultivar 'Opal' with 1% EOs showed that, after 60 d storage, thyme and savoury EOs significantly reduced grey mould rot incidence (average incidence 2% for both treatments) compared to the control (7%). Analyses of quality indicated slightly higher fruit firmness for 1% thyme at 30 d and slightly higher titratable acidity for 1% thyme and savoury at 60 d. Sampling of the atmosphere inside the cabinets was performed to characterize and quantify the volatile components of EOs released through biofumigation. Though thymol and p-cymene were the main components of thyme EO, the antimicrobial activity was mainly due to the presence of thymol and, to a lower extent, of carvacrol. In savoury EO, carvacrol and p-cymene were the main components, whereas in basil EO, linalool and estragole were mainly present. Metabarcoding analyses showed that the epiphytic microbiome had higher richness and evenness compared to their endophytic counterpart. By the end of shelf-life, treatments with thyme EO reduced B. cinerea abundance compared to the inoculated control for both endophytes (from 36.5% to 1.5%) and epiphytes (from 7.0% to 0.7%), while favouring a significant increase in Penicillium species both in endophytes (from 0.2% to 21.5%) and epiphytes (from 0.5% to 18.6%). Results indicate that thyme EO (1%) and savoury EO (1%) are equally effective in hampering grey mould rot development in vivo.

6.
Plant Dis ; 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096771

RESUMEN

Brown rot is a common apple disease in Italy, caused by Monilinia fructicola, M. laxa and M. fructigena (Martini et al. 2013). In September 2020, in a 'Jeromine' apple orchard under integrated pest management located in Scarnafigi (44°39'N, 7°33'E, north-western of Italy), fruits (8.6%) showing brown to blackish firm lesions (6.0 to 8.0 cm diameter) were observed. In some fruits, rots were covered by yellowish stromata. Two isolates (MPI1; MPI2) were obtained from two symptomatic apples and cultured on potato dextrose agar (PDA) for 7 days at 25°C in 12-h light/12-h dark regime. A white-to-greyish mycelium with slightly undulate margins and irregular, black stromata developed on PDA after 12 days incubation. Conidia, observed in branched monilioid chains, (Suppl. Fig. 1) were one-celled, globose, limoniform, hyaline, 38 to 58 µm (mean: 48) × 20 to 44 µm (mean: 33). Based on morphology, the isolates were tentatively identified as Monilinia polystroma (G.C.M. Leeuwen) Kohn. A polymerase chain reaction with primers ITS1 and ITS4 was performed on internal transcribed spacer (ITS) region 1 and 2 and 5.8S gene. The sequenced amplicons (435 bp - 445 bp; GenBank Accession No. MW600854; MW600855) showed 100% identity to the reference isolate of M. polystroma (HQ846944) and to other isolates from apples (AM937114; JX315717) and plum (GU067539). The ITS region of M. polystroma had five nucleotides to distinguish it from the closest species M. fructigena (Zhu et al. 2016; MH862738) (Suppl. Fig. 2). The pathogenicity of both isolates was tested on mature 'Jeromine' apples (10.1% total soluble solids). Three replicates of six apples per isolate were surface disinfected with 1% NaClO. A mycelial plug (5 mm) from colony grown on PDA was inserted using a cork borer into a hole (6 mm) in each fruit (Vasic et al. 2016). Apples inoculated with sterile PDA plugs were used as control. Fruits were placed at 22 ± 1 °C, 85% relative humidity and 12 h light/12 h dark regime. Lesion size was measured after 3, 6 and 9 days of incubation. All inoculated fruits developed typical brown rot symptoms 6 days after inoculation and yellowish stromata appeared on the surface; control fruit remained healthy (Suppl. Fig. 3). The virulence of both isolates was statistically similar (Suppl. Table 1). M. polystroma was reisolated from all inoculated fruits and confirmed by molecular methods. This is the first report of M. polystroma on apple in Italy. M. polystroma was previously reported on apple in Hungary (Petróczy et al. 2009), on apricot in Switzerland (Hilber-Bodmer et al. 2012), on peach and pear in Italy (Martini et al. 2014; 2015), on plum in China (Zhu et al. 2016), and on apple in Serbia (Vasic et al. 2018). The emergence of this pathogen for pome and stone fruit production in Europe stimulates to study its biology and epidemiology, and its fitness and management, as compared to the other endemic Monilinia species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...