Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acad Radiol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955591

RESUMEN

RATIONALE AND OBJECTIVES: To compare a conventional T1 volumetric interpolated breath-hold examination (VIBE) with SPectral Attenuated Inversion Recovery (SPAIR) fat saturation and a deep learning (DL)-reconstructed accelerated VIBE sequence with SPAIR fat saturation achieving a 50 % reduction in breath-hold duration (hereafter, VIBE-SPAIRDL) in terms of image quality and diagnostic confidence. MATERIALS AND METHODS: This prospective study enrolled consecutive patients referred for upper abdominal MRI from November 2023 to December 2023 at a single tertiary center. Patients underwent upper abdominal MRI with acquisition of non-contrast and gadobutrol-enhanced conventional VIBE-SPAIR (fourfold acceleration, acquisition time 16 s) and VIBE-SPAIRDL (sixfold acceleration, acquisition time 8 s) on a 1.5 T scanner. Image analysis was performed by four readers, evaluating homogeneity of fat suppression, perceived signal-to-noise ratio (SNR), edge sharpness, artifact level, lesion detectability and diagnostic confidence. A statistical power analysis for patient sample size estimation was performed. Image quality parameters were compared by a repeated measures analysis of variance, and interreader agreement was assessed using Fleiss' κ. RESULTS: Among 450 consecutive patients, 45 patients were evaluated (mean age, 60 years ± 15 [SD]; 27 men, 18 women). VIBE-SPAIRDL acquisition demonstrated superior SNR (P < 0.001), edge sharpness (P < 0.001), and reduced artifacts (P < 0.001) with substantial to almost perfect interreader agreement for non-contrast (κ: 0.70-0.91) and gadobutrol-enhanced MRI (κ: 0.68-0.87). No evidence of a difference was found between conventional VIBE-SPAIR and VIBE-SPAIRDL regarding homogeneity of fat suppression, lesion detectability, or diagnostic confidence (all P > 0.05). CONCLUSION: Deep learning reconstruction of VIBE-SPAIR facilitated a reduction of breath-hold duration by half, while reducing artifacts and improving image quality. SUMMARY: Deep learning reconstruction of prospectively accelerated T1 volumetric interpolated breath-hold examination for upper abdominal MRI enabled a 50 % reduction in breath-hold time with superior image quality. KEY RESULTS: 1) In a prospective analysis of 45 patients referred for upper abdominal MRI, accelerated deep learning (DL)-reconstructed VIBE images with spectral fat saturation (SPAIR) showed better overall image quality, with better perceived signal-to-noise ratio and less artifacts (all P < 0.001), despite a 50 % reduction in acquisition time compared to conventional VIBE. 2) No evidence of a difference was found between conventional VIBE-SPAIR and accelerated VIBE-SPAIRDL regarding lesion detectability or diagnostic confidence.

2.
Rofo ; 2024 Jul 25.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-39053502

RESUMEN

Investigation of motivation and identification of success factors in radiology research in Germany.Using a German online survey (54 questions, period: 3.5 months), demographic aspects, intrinsic and extrinsic success characteristics, as well as personal and organizational success factors were surveyed based on a career success model. The survey results were reported descriptively. The correlations between success factors and success characteristics were examined using linear, binary-logistic, and multinomial regression models.176 people (164 academically active, 10 not academically active) answered the survey. Most participants (80%, 139/174) worked at a university hospital. 32% had privatdozent or professor as their highest academic title (56/173). The researchers' main motivation was intrinsic interest in research (55%, 89/163), followed by a desire to increase their own career opportunities (25%, 41/163). The following were identified as factors for intrinsic success: i) support from department management (estimate=ß=0.26, p<0.001), ii) good work-life balance (ß=0.37, p<0.001), and iii) the willingness to pursue science even after reaching the career goal (ß=0.16, p<0.016). Relevant factors for extrinsic scientific success were mentoring, protected research time, and activities in professional societies.Researchers in German radiology are mainly intrinsically motivated. Factors known from the literature that determine intrinsic and extrinsic scientific success were confirmed in this study. Knowledge of these factors allows targeted systematic support and could thus increase scientific success in German radiology. · Main motivation for German radiology research is intrinsic interest, followed by career opportunities.. · Factors for intrinsic scientific success are good work-life balance and support by department management.. · Factors for extrinsic scientific success are mentoring, activities in professional societies, and protected research time.. · Wegner F, Heinrichs H, Stahlmann K et al. Motivation and success factors in radiological research in Germany - results of a survey by the Methodology and Research Working Group of the German Radiological Society. Fortschr Röntgenstr 2024; DOI 10.1055/a-2350-0023.

3.
Insights Imaging ; 15(1): 124, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825600

RESUMEN

OBJECTIVES: Achieving a consensus on a definition for different aspects of radiomics workflows to support their translation into clinical usage. Furthermore, to assess the perspective of experts on important challenges for a successful clinical workflow implementation. MATERIALS AND METHODS: The consensus was achieved by a multi-stage process. Stage 1 comprised a definition screening, a retrospective analysis with semantic mapping of terms found in 22 workflow definitions, and the compilation of an initial baseline definition. Stages 2 and 3 consisted of a Delphi process with over 45 experts hailing from sites participating in the German Research Foundation (DFG) Priority Program 2177. Stage 2 aimed to achieve a broad consensus for a definition proposal, while stage 3 identified the importance of translational challenges. RESULTS: Workflow definitions from 22 publications (published 2012-2020) were analyzed. Sixty-nine definition terms were extracted, mapped, and semantic ambiguities (e.g., homonymous and synonymous terms) were identified and resolved. The consensus definition was developed via a Delphi process. The final definition comprising seven phases and 37 aspects reached a high overall consensus (> 89% of experts "agree" or "strongly agree"). Two aspects reached no strong consensus. In addition, the Delphi process identified and characterized from the participating experts' perspective the ten most important challenges in radiomics workflows. CONCLUSION: To overcome semantic inconsistencies between existing definitions and offer a well-defined, broad, referenceable terminology, a consensus workflow definition for radiomics-based setups and a terms mapping to existing literature was compiled. Moreover, the most relevant challenges towards clinical application were characterized. CRITICAL RELEVANCE STATEMENT: Lack of standardization represents one major obstacle to successful clinical translation of radiomics. Here, we report a consensus workflow definition on different aspects of radiomics studies and highlight important challenges to advance the clinical adoption of radiomics. KEY POINTS: Published radiomics workflow terminologies are inconsistent, hindering standardization and translation. A consensus radiomics workflow definition proposal with high agreement was developed. Publicly available result resources for further exploitation by the scientific community.

4.
MAGMA ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733487

RESUMEN

OBJECTIVE: To prepare and analyze soy-lecithin-agar gels for non-toxic relaxometry phantoms with tissue-like relaxation times at 3T. METHODS: Phantoms mimicking the relaxation times of various tissues (gray and white matter, kidney cortex and medulla, spleen, muscle, liver) were built and tested with a clinical 3T whole-body MR scanner. Simple equations were derived to calculate the appropriate concentrations of soy lecithin and agar in aqueous solutions to achieve the desired relaxation times. Phantoms were tested for correspondence between measurements and calculated T1 and T2 values, reproducibility, spatial homogeneity, and temporal stability. T1 and T2 mapping techniques and a 3D T1-weighted sequence with high spatial resolution were applied. RESULTS: Except for the liver relaxation phantom, all phantoms were successfully and reproducibly produced. Good agreement was found between the targeted and measured relaxation times. The percentage deviations from the targeted relaxation times were less than 3% for T1 and less than 6.5% for T2. In addition, the phantoms were homogeneous and had little to no air bubbles. However, the phantoms were unstable over time: after a storage period of 4 weeks, mold growth and also changes in relaxation times were detected in almost all phantoms. CONCLUSION: Soy-lecithin-agar gels are a non-toxic material for the construction of relaxometry phantoms with tissue-like relaxation times. They are easy to prepare, inexpensive and allow independent adjustment of T1 and T2. However, there is still work to be done to improve the long-term stability of the phantoms.

6.
Eur J Radiol ; 172: 111359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325186

RESUMEN

PURPOSE: Excess fat accumulation contributes significantly to metabolic dysfunction and diseases. This study aims to systematically compare the accuracy of commercially available Dixon techniques for quantification of fat fraction in liver, skeletal musculature, and vertebral bone marrow (BM) of healthy individuals, investigating biases and sex-specific influences. METHOD: 100 healthy White individuals (50 women) underwent abdominal MRI using two-point and multi-echo Dixon sequences. Fat fraction (FF), proton density fat fraction (PDFF) and T2* values were calculated for liver, paravertebral muscles (PVM) and vertebral BM (Th8-L5). Agreement and systematic deviations were assessed using linear correlation and Bland-Altman plots. RESULTS: High correlations between FF and PDFF were observed in liver (r = 0.98 for women; r = 0.96 for men), PVM (r = 0.92 for women; r = 0.93 for men) and BM (r = 0.97 for women; r = 0.95 for men). Relative deviations between FF and PDFF in liver (18.92 % for women; 13.32 % for men) and PVM (1.96 % for women; 11.62 % for men) were not significant. Relative deviations in BM were significant (38.13 % for women; 27.62 % for men). Bias correction using linear models reduced discrepancies. T2* times were significantly shorter in BM (8.72 ms for women; 7.26 ms for men) compared to PVM (13.45 ms for women; 13.62 ms for men) and liver (29.47 ms for women; 26.35 ms for men). CONCLUSION: While no significant differences were observed for liver and PVM, systematic errors in BM FF estimation using two-point Dixon imaging were observed. These discrepancies - mainly resulting from organ-specific T2* times - have to be considered when applying two-point Dixon approaches for assessment of fat content. As suitable correction tools, linear models could provide added value in large-scale epidemiological cohort studies. Sex-specific differences in T2* should be considered.


Asunto(s)
Médula Ósea , Imagen por Resonancia Magnética , Masculino , Humanos , Femenino , Médula Ósea/diagnóstico por imagen , Médula Ósea/fisiología , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Tejido Adiposo/diagnóstico por imagen , Hígado/diagnóstico por imagen
7.
Magn Reson Med ; 92(1): 257-268, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282291

RESUMEN

PURPOSE: Free water in cortical bone is either contained in nearly cylindrical structures (mainly Haversian canals oriented parallel to the bone axis) or in more spherically shaped pores (lacunae). Those cavities have been reported to crucially influence bone quality and mechanical stability. Susceptibility differences between bone and water can lead to water frequency shifts dependent on the geometric characteristics. The purpose of this study is to calculate and measure the frequency distribution of the water signal in MRI in dependence of the microscopic bone geometry. METHODS: Finite element modeling and analytical approaches were performed to characterize the free water components of bone. The previously introduced UTE-FID technique providing spatially resolved FID-spectra was used to measure the frequency distribution pixel-wise for different orientations of the bone axis. RESULTS: The frequency difference between free water in spherical pores and in canals parallel to B0 amounts up to approximately 100 Hz at 3T. Simulated resonance frequencies showed good agreement with the findings in UTE-FID spectra. The intensity ratio of the two signal components (parallel canals and spherical pores) was found to vary between periosteal and endosteal regions. CONCLUSION: Spatially resolved UTE-FID examinations allow the determination of the frequency distribution of signals from free water in cortical bone. This frequency distribution indicates the composition of the signal contributions from nearly spherical cavities and cylindrical canals which allows for further characterization of bone structure and status.


Asunto(s)
Agua Corporal , Simulación por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Agua Corporal/diagnóstico por imagen , Algoritmos , Reproducibilidad de los Resultados , Modelos Biológicos , Sensibilidad y Especificidad , Interpretación de Imagen Asistida por Computador/métodos , Agua/química , Huesos/diagnóstico por imagen , Aumento de la Imagen/métodos , Análisis de Elementos Finitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA