Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(4): 286, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653992

RESUMEN

The progression of human degenerative and hypoxic/ischemic diseases is accompanied by widespread cell death. One death process linking iron-catalyzed reactive species with lipid peroxidation is ferroptosis, which shows hallmarks of both programmed and necrotic death in vitro. While evidence of ferroptosis in neurodegenerative disease is indicated by iron accumulation and involvement of lipids, a stable marker for ferroptosis has not been identified. Its prevalence is thus undetermined in human pathophysiology, impeding recognition of disease areas and clinical investigations with candidate drugs. Here, we identified ferroptosis marker antigens by analyzing surface protein dynamics and discovered a single protein, Fatty Acid-Binding Protein 5 (FABP5), which was stabilized at the cell surface and specifically elevated in ferroptotic cell death. Ectopic expression and lipidomics assays demonstrated that FABP5 drives redistribution of redox-sensitive lipids and ferroptosis sensitivity in a positive-feedback loop, indicating a role as a functional biomarker. Notably, immunodetection of FABP5 in mouse stroke penumbra and in hypoxic postmortem patients was distinctly associated with hypoxically damaged neurons. Retrospective cell death characterized here by the novel ferroptosis biomarker FABP5 thus provides first evidence for a long-hypothesized intrinsic ferroptosis in hypoxia and inaugurates a means for pathological detection of ferroptosis in tissue.


Asunto(s)
Biomarcadores , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Proteínas de Neoplasias , Proteínas de Unión a Ácidos Grasos/metabolismo , Animales , Humanos , Biomarcadores/metabolismo , Ratones , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Ratones Endogámicos C57BL , Peroxidación de Lípido , Masculino
2.
Biomedicines ; 12(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540154

RESUMEN

The concept of redirecting metabolic pathways in cancer cells for therapeutic purposes has become a prominent theme in recent research. Now, with the advent of ferroptosis, a new chink in the armor has evolved that allows for repurposing of ferroptosis-sensitive lipids in order to trigger cell death. This review presents the historical context of lipidomic and metabolic alterations in cancer cells associated with ferroptosis sensitization. The main proferroptotic genes and pathways are identified as therapeutic targets for increasing susceptibility to ferroptosis. In this review, a particular emphasis is given to pathways in cancer cells such as de novo lipogenesis, which has been described as a potential target for ferroptosis sensitization. Additionally, we propose a connection between ketolysis inhibition and sensitivity to ferroptosis as a new vulnerability in cancer cells. The main proferroptotic genes and pathways have been identified as therapeutic targets for increasing susceptibility to ferroptosis. Proferroptotic metabolic pathways and vulnerable points, along with suggested agonists or antagonists, are also discussed. Finally, general therapeutic strategies for ferroptosis sensitization based on the manipulation of the lipidome in ferroptosis-resistant cancer cell lines are proposed.

3.
Nat Cell Biol ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424270

RESUMEN

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

4.
Cell Calcium ; 110: 102703, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773492

RESUMEN

Ferroptosis is an iron-dependent form of cell death triggered by dysregulation of biochemical processes that culminate in lethal lipid peroxidation. Lipid metabolism is fundamental for determining ferroptotic fate, however, the mechanisms that alter lipid components to shape ferroptosis susceptibility remains elusive. A recent article by Lin and colleagues in Nature Communications systematically analyzed phospholipid transporters (phospholipid scramblases, flippases, and floppases), and identified that the lipid flippase solute carrier family 47 member 1 (SLC47A1) functions as a regulator of lipid remodeling and promotes ferroptosis resistance. SLC47A1 is transactivated by peroxisome proliferator activated receptor alpha (PPARA). Upon ferroptosis induction, SLC47A1 upregulation inhibits DHA/DPA polyunsaturated fatty acid containing glycerophospholipids (PUFA-PLs) accumulation to block ferroptosis. Depletion of either PPARA or SLC47A1 sensitized cells to ferroptosis by favoring ACSL4-SOAT1-mediated production of polyunsaturated fatty acid containing (PUFA) cholesterol esters. Ferroptosis has been widely linked to degenerative processes and tumor suppression. These findings indicate that lipid transporters may provide yet another means by which PUFA-containing membrane lipids convey ferroptosis sensitivity.


Asunto(s)
Ferroptosis , Ácidos Grasos Insaturados , Muerte Celular , Fosfolípidos/metabolismo , Metabolismo de los Lípidos
5.
Adv Sci (Weinh) ; 9(16): e2104979, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398994

RESUMEN

Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, ß8, and either ß3 or ß5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.


Asunto(s)
Astrocitos , Vectores Genéticos , Animales , Astrocitos/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Ratones , Transducción Genética
6.
Cell Death Differ ; 29(3): 670-686, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34663908

RESUMEN

Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca2+) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca2+ through the identification of the novel tetraspanin MS4A15. MS4A15 localizes to the endoplasmic reticulum, where it blocks ferroptosis by depleting luminal Ca2+ stores and reprogramming membrane phospholipids to ferroptosis-resistant species. Specifically, prolonged Ca2+ depletion inhibits lipid elongation and desaturation, driving lipid droplet dispersion and formation of shorter, more saturated ether lipids that protect phospholipids from ferroptotic reactive species. We further demonstrate that increasing luminal Ca2+ levels can preferentially sensitize refractory cancer cell lines. In summary, MS4A15 regulation of anti-ferroptotic lipid reservoirs provides a key resistance mechanism that is distinct from antioxidant and lipid detoxification pathways. Manipulating Ca2+ homeostasis offers a compelling strategy to balance cellular lipids and cell survival in ferroptosis-associated diseases.


Asunto(s)
Fenómenos Bioquímicos , Ferroptosis , Calcio , Peroxidación de Lípido , Oxidación-Reducción , Fosfolípidos
7.
FASEB J ; 35(6): e21550, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960023

RESUMEN

Species have evolved unique mechanisms to combat the effects of oxidative stress inside cells. A particularly devastating consequence of an unhindered oxidation of membrane lipids in the presence of iron results in cell death, known as ferroptosis. Hallmarks of ferroptosis, including peroxidation of polyunsaturated fatty acids, are conserved among animals and plants, however, early divergence of an ancestral mammalian GPX4 (mGPX4) has complicated our understanding of mechanistic similarities between species. To this end, we performed a comprehensive phylogenetic analysis and identified that orthologous Arabidopsis GPXs (AtGPXs) are more highly related to mGPX4 than mGPX4 is to other mammalian GPXs. This high degree of conservation suggested that experimental substitution may be possible. We, therefore, ectopically expressed AtGPX1-8 in ferroptosis-sensitive mouse fibroblasts. This substitution experiment revealed highest protection against ferroptosis induction by AtGPX5, as well as moderate protection by AtGPX2, -7, and -8. Further analysis of these cells revealed substantial abatement of lipid peroxidation in response to pharmacological challenge. The results suggest that the presence of ancestral GPX4 resulted in later functional divergence and specialization of GPXs in plants. The results also challenge a strict requirement for selenocysteine activity and suggest thioredoxin as a potent parallel antioxidant system in both plants and mammals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Evolución Biológica , Ferroptosis , Fibroblastos/citología , Glutatión Peroxidasa/metabolismo , Animales , Proteínas de Arabidopsis/genética , Muerte Celular , Fibroblastos/metabolismo , Glutatión Peroxidasa/genética , Células HeLa , Humanos , Ratones , Oxidación-Reducción , Estrés Oxidativo , Filogenia
8.
Neuro Oncol ; 23(11): 1898-1910, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33864076

RESUMEN

BACKGROUND: The transcription factor NF-κB drives neoplastic progression of many cancers including primary brain tumors (glioblastoma [GBM]). Precise therapeutic modulation of NF-κB activity can suppress central oncogenic signaling pathways in GBM, but clinically applicable compounds to achieve this goal have remained elusive. METHODS: In a pharmacogenomics study with a panel of transgenic glioma cells, we observed that NF-κB can be converted into a tumor suppressor by the non-psychotropic cannabinoid cannabidiol (CBD). Subsequently, we investigated the anti-tumor effects of CBD, which is used as an anticonvulsive drug (Epidiolex) in pediatric neurology, in a larger set of human primary GBM stem-like cells (hGSC). For this study, we performed pharmacological assays, gene expression profiling, biochemical, and cell-biological experiments. We validated our findings using orthotopic in vivo models and bioinformatics analysis of human GBM datasets. RESULTS: We found that CBD promotes DNA binding of the NF-κB subunit RELA and simultaneously prevents RELA phosphorylation on serine-311, a key residue that permits genetic transactivation. Strikingly, sustained DNA binding by RELA-lacking phospho-serine 311 was found to mediate hGSC cytotoxicity. Widespread sensitivity to CBD was observed in a cohort of hGSC defined by low levels of reactive oxygen species (ROS), while high ROS content in other tumors blocked CBD-induced hGSC death. Consequently, ROS levels served as a predictive biomarker for CBD-sensitive tumors. CONCLUSIONS: This evidence demonstrates how a clinically approved drug can convert NF-κB into a tumor suppressor and suggests a promising repurposing option for GBM therapy.


Asunto(s)
Cannabidiol , Glioblastoma , Proteínas Supresoras de Tumor , Antioxidantes , Apoptosis , Cannabidiol/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , FN-kappa B/metabolismo , Factor de Transcripción ReIA
10.
Plants (Basel) ; 10(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503886

RESUMEN

Monodehydroasorbate reductase (MDHAR) (EC1.6.5.4), a key enzyme in ascorbate-glutathione recycling, plays important roles in cell growth, plant development and physiological response to environmental stress via control of ascorbic acid (AsA)-mediated reduction/oxidation (redox) regulation. Until now, information regarding MDHAR function and regulatory mechanism in Gossypium have been limited. Herein, a genome-wide identification and comprehensive bioinformatic analysis of 36 MDHAR family genes in four Gossypium species, Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, were performed, indicating their close evolutionary relationship. Expression analysis of GhMDHARs in different cotton tissues and under abiotic stress and phytohormone treatment revealed diverse expression features. Fiber-specific expression analysis showed that GhMDHAR1A/D, 3A/D and 4A/D were preferentially expressed in fiber fast elongating stages to reach peak values in 15-DPA fibers, with corresponding coincident observances of MDHAR enzyme activity, AsA content and ascorbic acid/dehydroascorbic acid (AsA/DHA) ratio. Meanwhile, there was a close positive correlation between the increase of AsA content and AsA/DHA ratio catalyzed by MDHAR and fiber elongation development in different fiber-length cotton cultivars, suggesting the potential important function of MDHAR for fiber growth. Following H2O2 stimulation, GhMDHAR demonstrated immediate responses at the levels of mRNA, enzyme, the product of AsA and corresponding AsA/DHA value, and antioxidative activity. These results for the first time provide a comprehensive systemic analysis of the MDHAR gene family in plants and the four cotton species and demonstrate the contribution of MDHAR to fiber elongation development by controlling AsA-recycling-mediated cellular redox homeostasis.

11.
Mol Oncol ; 14(10): 2420-2435, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32602581

RESUMEN

Nonsense-mediated decay (NMD) proteins are responsible for the surveillance and degradation of aberrant RNAs. Suppressor with morphogenetic effect on genitalia 7 (SMG7) is an NMD complex protein and a regulator of tumor necrosis factor (TNF)-induced extrinsic apoptosis; however, this unique function has not been explored in detail. In this study, we show that loss of Smg7 leads to unrestricted expression of long noncoding RNAs (lncRNAs) in addition to NMD targets. Functional analysis of Smg7-/- cells showed downregulation of the tumor suppressor cylindromatosis (CYLD) and diminished caspase activity, thereby switching cells to nuclear factor-κB (NF-κB)-mediated protection. This positive relationship between SMG7 and CYLD was found to be widely conserved in human cancer cell lines and renal carcinoma samples from The Cancer Genome Atlas. In addition to CYLD suppression, upregulation of lncRNAs Pvt1 and Adapt33 rendered cells resistant to TNF, while pharmacologic inhibition of NF-κB in Pvt1-overexpressing TNF-resistant cells and Smg7-deficient spheroids re-established TNF-induced lethality. Thus, loss of SMG7 decouples regulation of two separate oncogenic factors with cumulative downstream effects on the NF-κB pathway. The data highlight a novel and specific regulation of oncogenic factors by SMG7 and pinpoint a composite tumor suppressor role in response to TNF.


Asunto(s)
Apoptosis , Proteínas Portadoras/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Largo no Codificante/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Células 3T3 NIH , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , ARN Largo no Codificante/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
12.
ACS Cent Sci ; 6(1): 41-53, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31989025

RESUMEN

Ferroptosis is an iron-dependent form of regulated cell death linking iron, lipid, and glutathione levels to degenerative processes and tumor suppression. By performing a genome-wide activation screen, we identified a cohort of genes antagonizing ferroptotic cell death, including GTP cyclohydrolase-1 (GCH1) and its metabolic derivatives tetrahydrobiopterin/dihydrobiopterin (BH4/BH2). Synthesis of BH4/BH2 by GCH1-expressing cells caused lipid remodeling, suppressing ferroptosis by selectively preventing depletion of phospholipids with two polyunsaturated fatty acyl tails. GCH1 expression level in cancer cell lines stratified susceptibility to ferroptosis, in accordance with its expression in human tumor samples. The GCH1-BH4-phospholipid axis acts as a master regulator of ferroptosis resistance, controlling endogenous production of the antioxidant BH4, abundance of CoQ10, and peroxidation of unusual phospholipids with two polyunsaturated fatty acyl tails. This demonstrates a unique mechanism of ferroptosis protection that is independent of the GPX4/glutathione system.

13.
BMC Genomics ; 18(1): 905, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178829

RESUMEN

BACKGROUND: As CRISPR/Cas9 mediated screens with pooled guide libraries in somatic cells become increasingly established, an unmet need for rapid and accurate companion informatics tools has emerged. We have developed a lightweight and efficient software to easily manipulate large raw next generation sequencing datasets derived from such screens into informative relational context with graphical support. The advantages of the software entitled ENCoRE (Easy NGS-to-Gene CRISPR REsults) include a simple graphical workflow, platform independence, local and fast multithreaded processing, data pre-processing and gene mapping with custom library import. RESULTS: We demonstrate the capabilities of ENCoRE to interrogate results from a pooled CRISPR cellular viability screen following Tumor Necrosis Factor-alpha challenge. The results not only identified stereotypical players in extrinsic apoptotic signaling but two as yet uncharacterized members of the extrinsic apoptotic cascade, Smg7 and Ces2a. We further validated and characterized cell lines containing mutations in these genes against a panel of cell death stimuli and involvement in p53 signaling. CONCLUSIONS: In summary, this software enables bench scientists with sensitive data or without access to informatic cores to rapidly interpret results from large scale experiments resulting from pooled CRISPR/Cas9 library screens.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis , Sistemas CRISPR-Cas , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Animales , Línea Celular , Ratones , Mutación
14.
Nat Chem Biol ; 13(1): 91-98, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27842070

RESUMEN

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.


Asunto(s)
Apoptosis , Coenzima A Ligasas/metabolismo , Glutatión Peroxidasa/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/deficiencia , Femenino , Glutatión Peroxidasa/deficiencia , Humanos , Hipoglucemiantes/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Necrosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Tiazolidinedionas/farmacología
15.
Sci Rep ; 6: 32326, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580957

RESUMEN

The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods.


Asunto(s)
Sistemas CRISPR-Cas/genética , Sitios Genéticos , Mutagénesis/genética , Animales , Marcación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Hum Gene Ther Methods ; 26(4): 107-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26107288

RESUMEN

Parkinson's disease is one of the most common neurodegenerative disorders characterized by cell death of dopaminergic neurons in the substantia nigra. Recent research has focused on cellular replacement through lineage reprogramming as a potential therapeutic strategy. This study sought to use genetics to define somatic cell types in vivo amenable to reprogramming. To stimulate in vivo reprogramming to dopaminergic neurons, we generated a Rosa26 knock-in mouse line conditionally overexpressing Mash1, Lmx1a, and Nurr1. These proteins are characterized by their role in neuronal commitment and development of midbrain dopaminergic neurons and have previously been shown to convert fibroblasts to dopaminergic neurons in vitro. We show that a tricistronic construct containing these transcription factors can reprogram astrocytes and fibroblasts in vitro. However, cassette overexpression triggered cell death in vivo, in part through endoplasmic reticulum stress, while we also detected "uncleaved" forms of the polyprotein, suggesting poor "cleavage" efficiency of the 2A peptides. Based on our results, the cassette overexpression induced apoptosis and precluded reprogramming in our mouse model. Therefore, we suggest that alternatives must be explored to balance construct design with efficacious reprogramming. It is evident that there are still biological obstacles to overcome for in vivo reprogramming to dopaminergic neurons.


Asunto(s)
Reprogramación Celular/genética , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Vectores Genéticos/genética , Transgenes , Animales , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Muerte Celular/genética , Línea Celular , Células Madre Embrionarias , Femenino , Fibroblastos , Orden Génico , Recombinación Homóloga , Proteínas con Homeodominio LIM/genética , Lentivirus/genética , Masculino , Ratones , Ratones Transgénicos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Factores de Transcripción/genética , Transducción Genética , Respuesta de Proteína Desplegada/genética
17.
Nat Cell Biol ; 16(12): 1180-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25402683

RESUMEN

Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4(-/-) mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4(-/-) mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.


Asunto(s)
Lesión Renal Aguda/patología , Apoptosis , Glutatión Peroxidasa/genética , Quinoxalinas/farmacología , Daño por Reperfusión/patología , Compuestos de Espiro/farmacología , Animales , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Cardiolipinas/metabolismo , Línea Celular , Humanos , Imidazoles/farmacología , Etiquetado Corte-Fin in Situ , Indoles/farmacología , Riñón/metabolismo , Riñón/patología , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Peroxidasas/farmacología , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa
18.
PLoS One ; 8(9): e74207, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058528

RESUMEN

Efficient gene targeting in embryonic stem cells requires that modifying DNA sequences are identical to those in the targeted chromosomal locus. Yet, there is a paucity of isogenic genomic clones for human cell lines and PCR amplification cannot be used in many mutation-sensitive applications. Here, we describe a novel method for the direct cloning of genomic DNA into a targeting vector, pRTVIR, using oligonucleotide-directed homologous recombination in yeast. We demonstrate the applicability of the method by constructing functional targeting vectors for mammalian genes Uhrf1 and Gfap. Whereas the isogenic targeting of the gene Uhrf1 showed a substantial increase in targeting efficiency compared to non-isogenic DNA in mouse E14 cells, E14-derived DNA performed better than the isogenic DNA in JM8 cells for both Uhrf1 and Gfap. Analysis of 70 C57BL/6-derived targeting vectors electroporated in JM8 and E14 cell lines in parallel showed a clear dependence on isogenicity for targeting, but for three genes isogenic DNA was found to be inhibitory. In summary, this study provides a straightforward methodological approach for the direct generation of isogenic gene targeting vectors.


Asunto(s)
Clonación Molecular/métodos , ADN/genética , Células Madre Embrionarias/metabolismo , Marcación de Gen , Vectores Genéticos , Saccharomyces cerevisiae/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT , Células Madre Embrionarias/citología , Técnicas de Transferencia de Gen , Proteína Ácida Fibrilar de la Glía , Recombinación Homóloga , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Especificidad de Órganos , Ubiquitina-Proteína Ligasas
19.
Immunity ; 38(4): 655-68, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23583643

RESUMEN

The Roquin-1 protein binds to messenger RNAs (mRNAs) and regulates gene expression posttranscriptionally. A single point mutation in Roquin-1, but not gene ablation, increases follicular helper T (Tfh) cell numbers and causes lupus-like autoimmune disease in mice. In T cells, we did not identify a unique role for the much lower expressed paralog Roquin-2. However, combined ablation of both genes induced accumulation of T cells with an effector and follicular helper phenotype. We showed that Roquin-1 and Roquin-2 proteins redundantly repressed the mRNA of inducible costimulator (Icos) and identified the Ox40 costimulatory receptor as another shared mRNA target. Combined acute deletion increased Ox40 signaling, as well as Irf4 expression, and imposed Tfh differentiation on CD4(+) T cells. These data imply that both proteins maintain tolerance by preventing inappropriate T cell activation and Tfh cell differentiation, and that Roquin-2 compensates in the absence of Roquin-1, but not in the presence of its mutated form.


Asunto(s)
Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , ARN Mensajero/metabolismo , Receptores OX40/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antígenos CD4/metabolismo , Diferenciación Celular/genética , Células HEK293 , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Unión Proteica , Receptores OX40/genética , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética
20.
Neurochem Int ; 62(5): 738-49, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23333338

RESUMEN

Oxidative stress is a major common hallmark of many neurodegenerative disease such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Novel concepts in our understanding of oxidative stress indicate that a perturbed redox circuitry could be strongly linked with the onset of such diseases. In this respect, glutathione and thioredoxin dependent antioxidant enzymes play a central role as key regulators due to the fact that a slight dysfunction of any of these enzymes leads to sustained reactive oxygen species (ROS) production. Apart from their classical role as ROS scavengers, some of these enzymes are also able to control post-translational modifications. Therefore, efficient control of ROS production and reversibility of post-translational modifications are critical as improper control of such events may lead to the activation of pathological redox circuits that eventually culminate in neuronal cell death. To dissect the apparently opposing functions of ROS in cell physiology and pathophysiology, a proper working toolkit is mandatory. In vivo modeling is an absolute requirement due to the complexity of redox signaling systems that often contradict data obtained from in vitro approaches. Hence, inducible/conditional knockout mouse models for key redox enzymes are emerging as powerful tools to perturb redox circuitries in a temporal and spatial manner. In this review we address the basics of ROS generation, chemistry and detoxification as well as examples in where applications of mouse models of important enzymes have been successfully applied in the study of neurodegenerative processes. We also highlight the importance of new models to overcome present technical limitations in order to advance in the study of redox processes in the role of neurodegeneration.


Asunto(s)
Glutatión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tiorredoxinas/metabolismo , Animales , Encéfalo/metabolismo , Muerte Celular , Ratones , Enfermedades Neurodegenerativas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...