Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mov Disord ; 38(6): 1044-1055, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050861

RESUMEN

BACKGROUND: Venglustat is a brain-penetrant, small molecule inhibitor of glucosylceramide synthase used in clinical testing for treatment of Parkinson's disease (PD). Despite beneficial effects in certain cellular and rodent models, patients with PD with mutations in GBA, the gene for lysosomal glucocerebrosidase, experienced worsening of their motor function under venglustat treatment (NCT02906020, MOVES-PD, phase 2 trial). OBJECTIVE: The objective of this study was to evaluate venglustat in mouse models of PD with overexpression of wild-type α-synuclein. METHODS: Mice overexpressing α-synuclein (Thy1-aSyn line 61) or Gba-mutated mice with viral vector-induced overexpression of α-synuclein in the substantia nigra were administered venglustat as food admixture. Motor and cognitive performance, α-synuclein-related pathology, and microgliosis were compared with untreated controls. RESULTS: Venglustat worsened motor function in Thy1-aSyn transgenics on the challenging beam and the pole test. Although venglustat did not alter the cognitive deficit in the Y-maze test, it alleviated anxiety-related behavior in the novel object recognition test. Venglustat reduced soluble and membrane-bound α-synuclein in the striatum and phosphorylated α-synuclein in limbic brain regions. Although venglustat reversed the loss of parvalbumin immunoreactivity in the basolateral amygdala, it tended to increase microgliosis and phosphorylated α-synuclein in the substantia nigra. Furthermore, venglustat also partially worsened motor performance and tended to increase neurofilament light chain in the cerebrospinal fluid in the Gba-deficient model with nigral α-synuclein overexpression and neurodegeneration. CONCLUSIONS: Venglustat treatment in two mouse models of α-synuclein overexpression showed that glucosylceramide synthase inhibition had differential detrimental or beneficial effects on behavior and neuropathology possibly related to brain region-specific effects. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Ratones , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Ratones Transgénicos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Modelos Animales de Enfermedad
2.
Neurobiol Dis ; 152: 105297, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581254

RESUMEN

Increased neuronal expression of the Na-K-2Cl cotransporter NKCC1 has been implicated in the generation of seizures and epilepsy. However, conclusions from studies on the NKCC1-specific inhibitor, bumetanide, are equivocal, which is a consequence of the multiple potential cellular targets and poor brain penetration of this drug. Here, we used Nkcc1 knockout (KO) and wildtype (WT) littermate control mice to study the ictogenic and epileptogenic effects of intrahippocampal injection of kainate. Kainate (0.23 µg in 50 nl) induced limbic status epilepticus (SE) in both KO and WT mice with similar incidence, latency to SE onset, and SE duration, but the number of intermittent generalized convulsive seizures during SE was significantly higher in Nkcc1 KO mice, indicating increased SE severity. Following SE, spontaneous recurrent seizures (SRS) were recorded by continuous (24/7) video/EEG monitoring at 0-1, 4-5, and 12-13 weeks after kainate, using depth electrodes in the ipsilateral hippocampus. Latency to onset of electrographic SRS and the incidence of electrographic SRS were similar in WT and KO mice. However, the frequency of electrographic seizures was lower whereas the frequency of electroclinical seizures was higher in Nkcc1 KO mice, indicating a facilitated progression from electrographic to electroclinical seizures during chronic epilepsy, and a more severe epileptic phenotype, in the absence of NKCC1. The present findings suggest that NKCC1 is dispensable for the induction, progression and manifestation of epilepsy, and they do not support the widely held notion that inhibition of NKCC1 in the brain is a useful strategy for preventing or modifying epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Femenino , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
3.
Neurobiol Dis ; 149: 105227, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347976

RESUMEN

Epileptogenesis, the gradual process that leads to epilepsy after brain injury or genetic mutations, is a complex network phenomenon, involving a variety of morphological, biochemical and functional brain alterations. Although risk factors for developing epilepsy are known, there is currently no treatment available to prevent epilepsy. We recently proposed a multitargeted, network-based approach to prevent epileptogenesis by rationally combining clinically available drugs and provided first proof-of-concept that this strategy is effective. Here we evaluated eight novel rationally chosen combinations of 14 drugs with mechanisms that target different epileptogenic processes. The combinations consisted of 2-4 different drugs per combination and were administered systemically over 5 days during the latent epileptogenic period in the intrahippocampal kainate mouse model of acquired temporal lobe epilepsy, starting 6 h after kainate. Doses and dosing intervals were based on previous pharmacokinetic and tolerability studies in mice. The incidence and frequency of spontaneous electrographic and electroclinical seizures were recorded by continuous (24/7) video linked EEG monitoring done for seven days at 4 and 12 weeks post-kainate, i.e., long after termination of drug treatment. Compared to vehicle controls, the most effective drug combination consisted of low doses of levetiracetam, atorvastatin and ceftriaxone, which markedly reduced the incidence of electrographic seizures (by 60%; p<0.05) and electroclinical seizures (by 100%; p<0.05) recorded at 12 weeks after kainate. This effect was lost when higher doses of the three drugs were administered, indicating a synergistic drug-drug interaction at the low doses. The potential mechanisms underlying this interaction are discussed. We have discovered a promising novel multitargeted combination treatment for modifying the development of acquired epilepsy.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Atorvastatina/administración & dosificación , Ceftriaxona/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Epilepsia/tratamiento farmacológico , Levetiracetam/administración & dosificación , Animales , Evaluación Preclínica de Medicamentos/métodos , Quimioterapia Combinada , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Ácido Kaínico/toxicidad , Masculino , Ratones , Resultado del Tratamiento
4.
Front Cell Dev Biol ; 8: 598446, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282874

RESUMEN

Cumulative evidence collected in recent decades suggests that lysosomal dysfunction contributes to neurodegenerative diseases, especially if amyloid proteins are involved. Among these, alpha-synuclein (aSyn) that progressively accumulates and aggregates in Lewy bodies is undisputedly a main culprit in Parkinson disease (PD) pathogenesis. Lysosomal dysfunction is evident in brains of PD patients, and mutations in lysosomal enzymes are a major risk factor of PD. At first glance, the role of protein-degrading lysosomes in a disease with pathological protein accumulation seems obvious and should guide the development of straightforward and rational therapeutic targets. However, our review demonstrates that the story is more complicated for aSyn. The protein can possess diverse posttranslational modifications, aggregate formations, and truncations, all of which contribute to a growing known set of proteoforms. These interfere directly or indirectly with lysosome function, reducing their own degradation, and thereby accelerating the protein aggregation and disease process. Conversely, unbalanced lysosomal enzymatic processes can produce truncated aSyn proteoforms that may be more toxic and prone to aggregation. This highlights the possibility of enhancing lysosomal function as a treatment for PD, if it can be confirmed that this approach effectively reduces harmful aSyn proteoforms and does not produce novel, toxic proteoforms.

5.
Neuropharmacology ; 180: 108297, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890589

RESUMEN

Mechanistic target of rapamycin (mTOR) regulates cell proliferation, growth and survival, and is activated in cancer and neurological disorders, including epilepsy. The rapamycin derivative ("rapalog") everolimus, which allosterically inhibits the mTOR pathway, is approved for the treatment of partial epilepsy with spontaneous recurrent seizures (SRS) in individuals with tuberous sclerosis complex (TSC). In contrast to the efficacy in TSC, the efficacy of rapalogs on SRS in other types of epilepsy is equivocal. Furthermore, rapalogs only poorly penetrate into the brain and are associated with peripheral adverse effects, which may compromise their therapeutic efficacy. Here we compare the antiseizure efficacy of two novel, brain-permeable ATP-competitive and selective mTORC1/2 inhibitors, PQR620 and PQR626, and the selective dual pan-PI3K/mTORC1/2 inhibitor PQR530 in two mouse models of chronic epilepsy with SRS, the intrahippocampal kainate (IHK) mouse model of acquired temporal lobe epilepsy and Tsc1GFAP CKO mice, a well-characterized mouse model of epilepsy in TSC. During prolonged treatment of IHK mice with rapamycin, everolimus, PQR620, PQR626, or PQR530; only PQR620 exerted a transient antiseizure effect on SRS, at well tolerated doses whereas the other compounds were ineffective. In contrast, all of the examined compounds markedly suppressed SRS in Tsc1GFAP CKO mice during chronic treatment at well tolerated doses. Thus, against our expectation, no clear differences in antiseizure efficacy were found across the three classes of mTOR inhibitors examined in mouse models of genetic and acquired epilepsies. The main advantage of the novel 1,3,5-triazine derivatives is their excellent tolerability compared to rapalogs, which would favor their development as new therapies for TORopathies such as TSC.


Asunto(s)
Epilepsias Parciales/tratamiento farmacológico , Everolimus/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Sirolimus/uso terapéutico , Esclerosis Tuberosa/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Epilepsias Parciales/fisiopatología , Everolimus/farmacología , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Resultado del Tratamiento , Esclerosis Tuberosa/fisiopatología
6.
Neurobiol Dis ; 134: 104664, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678583

RESUMEN

Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.


Asunto(s)
Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Quimioterapia Combinada/métodos , Epilepsia del Lóbulo Temporal , Mapeo de Interacción de Proteínas/métodos , Animales , Levetiracetam/farmacología , Masculino , Ratones , Prueba de Estudio Conceptual , Topiramato/farmacología , Transcriptoma/efectos de los fármacos
7.
Neuropharmacology ; 162: 107817, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654704

RESUMEN

Dysregulation of the PI3K/Akt/mTOR pathway has been implicated in several brain disorders, including epilepsy. Rapamycin and similar compounds inhibit mTOR. complex 1 and have been reported to decrease seizures, delay seizure development, or prevent epileptogenesis in different animal models of genetic or acquired epilepsies. However, data for acquired epilepsy are inconsistent, which, at least in part, may be due to the poor brain penetration and long brain persistence of rapamycin and the fact that it blocks only one of the two cellular mTOR complexes. Here we examined the antiepileptogenic or disease-modifying effects of two novel, brain-permeable and well tolerated 1,3,5-triazine derivatives, the ATP-competitive mTORC1/2 inhibitor PQR620 and the dual pan-PI3K/mTORC1/2 inhibitor PQR530 in the intrahippocampal kainate mouse model, in which spontaneous seizures develop after status epilepticus (SE). Following kainate injection, the two compounds were administered over 2 weeks at doses previously been shown to block mTORC1/2 or PI3K/mTORC1/2 in the mouse brain. When spontaneous seizures were recorded by continuous (24/7) video-EEG recording starting 6 weeks after termination of treatment, no effects on incidence or frequency of seizures were observed. Drug treatment suppressed the epilepsy-induced activation of the PI3K/Akt/mTOR pathway in the hippocampus, but granule cell dispersion in the dentate gyrus was not prevented. When epilepsy-associated behavioral alterations were determined 12-14 weeks after kainate, mice pretreated with PQR620 or PQR530 exhibited reduced anxiety-related behavior in the light-dark box, indicating a disease-modifying effect. Overall, the data indicate that mTORC1/C2 or PI3K/mTORC1/C2 inhibition may not be an antiepileptogenic strategy for SE-induced epilepsy.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Epilepsia del Lóbulo Temporal/prevención & control , Hipocampo/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Piridinas/farmacología , Triazinas/farmacología , Animales , Ansiedad , Conducta Animal/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Inhibidores Enzimáticos/farmacología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/etiología , Agonistas de Aminoácidos Excitadores/toxicidad , Hipocampo/metabolismo , Ácido Kaínico/toxicidad , Masculino , Ratones , Fosfatidilinositol 3-Quinasas , Convulsiones , Transducción de Señal , Estado Epiléptico/inducido químicamente , Estado Epiléptico/complicaciones
8.
Epilepsia ; 61(1): 157-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31828786

RESUMEN

OBJECTIVE: Intracranial (intrahippocampal or intra-amygdala) administration of kainate in rodents leads to spatially restricted brain injury and development of focal epilepsy with characteristics that resemble mesial temporal lobe epilepsy. Such rodent models are used both in the search for more effective antiseizure drugs (ASDs) and in the development of antiepileptogenic strategies. However, it is not clear which of the models is best suited for testing different types of epilepsy therapies. METHODS: In the present study, we performed a face-to-face comparison of the intra-amygdala kainate (IAK) and intrahippocampal kainate (IHK) mouse models using the same mouse inbred strain (C57BL/6). For comparison, some experiments were performed in mouse outbred strains. RESULTS: Intra-amygdala kainate injection led to more severe status epilepticus and higher mortality than intrahippocampal injection. In male C57BL/6 mice, the latent period to spontaneous recurrent seizures (SRSs) was short or absent in both models, whereas a significantly longer latent period was determined in NMRI and CD-1 outbred mice. When SRSs were recorded from the ipsilateral hippocampus, relatively frequent electroclinical seizures were determined in the IAK model, whereas only infrequent electroclinical seizures but extremely frequent focal electrographic seizures were determined in the IHK model. As a consequence of the differences in SRS frequency, prolonged video-electroencephalographic monitoring and drug administration were needed for testing efficacy of the benchmark ASD carbamazepine in the IAK model, whereas acute drug testing was possible in the IHK model. In both models, carbamazepine was only effective at high doses, indicating ASD resistance to this benchmark drug. SIGNIFICANCE: We found a variety of significant differences between the IAK and IHK models, which are important when deciding which of these models is best suited for studies on novel epilepsy therapies. The IAK model appears particularly interesting for studies on disease-modifying treatments, whereas the IHK model is well suited for studying the antiseizure activity of novel ASDs against difficult-to-treated focal seizures.


Asunto(s)
Convulsivantes/administración & dosificación , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Ácido Kaínico/administración & dosificación , Amígdala del Cerebelo/efectos de los fármacos , Animales , Anticonvulsivantes/farmacología , Convulsivantes/toxicidad , Hipocampo/efectos de los fármacos , Ácido Kaínico/toxicidad , Ratones
9.
Epilepsy Res ; 151: 48-66, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30831337

RESUMEN

Network-based approaches in drug discovery comprise both development of novel drugs interacting with multiple targets and repositioning of drugs with known targets to form novel drug combinations that interact with cellular or molecular networks whose function is disturbed in a disease. Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed multitargeted, network-based approaches to prevent epileptogenesis by combinations of clinically available drugs chosen to impact diverse epileptogenic processes. In order to test this strategy preclinically, we developed a multiphase sequential study design for evaluating such drug combinations in rodents, derived from human clinical drug development phases. Because pharmacokinetics of such drugs are known, only the tolerability of novel drug combinations needs to be evaluated in Phase I in öhealthy" controls. In Phase IIa, tolerability is assessed following an epileptogenic brain insult, followed by antiepileptogenic efficacy testing in Phase IIb. Here, we report Phase I and Phase IIa evaluation of 7 new drug combinations in mice, using 10 drugs (levetiracetam, topiramate, gabapentin, deferoxamine, fingolimod, ceftriaxone, α-tocopherol, melatonin, celecoxib, atorvastatin) with diverse mechanisms thought to be important in epileptogenesis. Six of the 7 drug combinations were well tolerated in mice during prolonged treatment at the selected doses in both controls and during the latent phase following status epilepticus induced by intrahippocampal kainate. However, none of the combinations prevented hippocampal damage in response to kainate, most likely because treatment started only 16-18 h after kainate. This suggests that antiepileptogenic or disease-modifying treatment may need to start earlier after the brain insult. The present data provide a rich collection of tolerable, network-based combinatorial therapies as a basis for antiepileptogenic or disease-modifying efficacy testing.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Quimioterapia Combinada/métodos , Fármacos Neuroprotectores/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacocinética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Agonistas de Aminoácidos Excitadores/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico/toxicidad , Masculino , Ratones , Fármacos Neuroprotectores/farmacocinética , Trastornos Psicomotores/etiología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/complicaciones , Estado Epiléptico/patología
10.
Sci Rep ; 7(1): 12191, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939854

RESUMEN

Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Anticonvulsivantes/farmacología , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada , Electroencefalografía , Epilepsia/inducido químicamente , Epilepsia/diagnóstico , Epilepsia/patología , Humanos , Ácido Kaínico/toxicidad , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Piperidinas/farmacología , Piperidinas/uso terapéutico , Quinoxalinas/farmacología , Quinoxalinas/uso terapéutico , Factores de Tiempo , Resultado del Tratamiento
11.
Epilepsia Open ; 2(2): 180-187, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29588947

RESUMEN

Objective: There is an ongoing debate about definition of seizures in experimental models of acquired epilepsy and how important adequate sham controls are in this respect. For instance, several mouse and rat strains exhibit high-voltage rhythmic spike or spike-wave discharges in the cortical electroencephalogram (EEG), which has to be considered when using such strains for induction of epilepsy by status epilepticus, traumatic brain injury, or other means. Mice developing spontaneous recurrent nonconvulsive and convulsive seizures after intrahippocampal injection of kainate are increasingly being used as a model of mesial temporal lobe epilepsy. We performed a prospective study in which EEG alterations occurring in this model were compared with the EEGs in appropriate sham controls, using hippocampal electrodes and video-EEG monitoring. Methods: Experiments with intrahippocampal kainate (or saline) injections started when mice were about 8 weeks of age. Continuous video-EEG recording via hippocampal electrodes was performed 6 weeks after surgery in kainate-injected mice and sham controls, that is, at an age of about 14 weeks. Three days of continuous video-EEG monitoring were compared between kainate-injected mice and experimental controls. Results: As reported previously, kainate-injected mice exhibited two types of highly frequent electrographic seizures: high-voltage sharp waves, which were often monomorphic, and polymorphic hippocampal paroxysmal discharges. In addition, generalized convulsive clinical seizures were infrequently observed. None of these electrographic or electroclinical seizures were observed in sham controls. The only infrequently observed EEG abnormalities in sham controls were isolated spikes or spike clusters, which were also recorded in epileptic mice. Significance: This study rigorously demonstrates, by explicit comparison with the EEGs of sham controls, that the nonconvulsive paroxysmal events observed in this model are consequences of the induced epilepsy and not features of the EEG expected to be seen in some experimental control mice or unintentionally induced by surgical procedures.

12.
Epilepsia ; 57(5): 698-705, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26921222

RESUMEN

OBJECTIVE: The loop diuretic bumetanide has been reported to potentiate the antiseizure activity of phenobarbital in rodent models of neonatal seizures, most likely as a result of inhibition of the chloride importer Na-K-Cl cotransporter isoform 1 (NKCC1) in the brain. In view of the intractability of neonatal seizures, the preclinical findings prompted a clinical trial in neonates on bumetanide as an add-on to phenobarbital, which, however, had to be terminated because of ototoxicity and lack of efficacy. We have recently shown that bumetanide penetrates only poorly into the brain, so that we developed lipophilic prodrugs such as BUM5, the N,N-dimethylaminoethylester of bumetanide, which penetrate more easily into the brain and are converted to bumetanide. METHODS: In the present study, we used a new strategy to test whether BUM5 is more potent than bumetanide in potentiating the antiseizure effect of phenobarbital. Adult mice were made epileptic by pilocarpine, and the antiseizure effects of bumetanide, BUM5, and phenobarbital alone or in combination were determined by the maximal electroshock seizure threshold test. RESULTS: In nonepileptic mice, only phenobarbital exerted seizure threshold-increasing activity, and this was not potentiated by the NKCC1 inhibitors. In contrast, a marked potentiation of phenobarbital by BUM5, but not bumetanide, was determined in epileptic mice. SIGNIFICANCE: Thus, bumetanide is not capable of potentiating phenobarbital's antiseizure effect in an adult mouse model, which, however, can be overcome by using the prodrug BUM5. These data substantiate that BUM5 is a promising tool compound for target validation and proof-of-concept studies on the role of NKCC1 in brain diseases.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Bumetanida/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Fenobarbital/uso terapéutico , Profármacos/uso terapéutico , Animales , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Electroencefalografía/efectos de los fármacos , Electrochoque/efectos adversos , Epilepsia del Lóbulo Temporal/etiología , Ratones , Pentilenotetrazol/toxicidad , Pilocarpina/toxicidad
13.
Epilepsy Res ; 118: 34-48, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26600369

RESUMEN

Prevention of symptomatic epilepsy ("antiepileptogenesis") in patients at risk is a major unmet clinical need. Several drugs underwent clinical trials for epilepsy prevention, but none of the drugs tested was effective. Similarly, most previous preclinical attempts to develop antiepileptogenic strategies failed. In the majority of studies, drugs were given as monotherapy. However, epilepsy is a complex network phenomenon, so that it is unlikely that a single drug can halt epileptogenesis. We recently proposed multitargeted approaches ("network pharmacology") to interfere with epileptogenesis. One strategy, which, if effective, would allow a relatively rapid translation into the clinic, is developing novel combinations of clinically used drugs with diverse mechanisms that are potentially relevant for antiepileptogenesis. In order to test this strategy preclinically, we developed an algorithm for testing such drug combinations, which was inspired by the established drug development phases in humans. As a first step of this algorithm, tolerability of four rationally chosen, repeatedly administered drug combinations was evaluated by a large test battery in mice: A, levetiracetam and phenobarbital; B, valproate, losartan, and memantine; C, levetiracetam and topiramate; and D, levetiracetam, parecoxib, and anakinra. As in clinical trials, tolerability was separately evaluated before starting efficacy experiments to identify any adverse effects of the combinations that may critically limit the successful translation of preclinical findings to the clinic. Except combination B, all drug cocktails were relatively well tolerated. Based on previous studies, we expected that tolerability would be lower in the latent and chronic phases following status epilepticus in mice, but, except combinations C and D, no significant differences were determined between nonepileptic and post-status epilepticus animals. As a next step, the rationally chosen drug combinations will be evaluated for antiepileptogenic activity in mouse and rat models of symptomatic epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Quimioterapia Combinada/métodos , Estado Epiléptico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Ácido Kaínico/toxicidad , Masculino , Ratones , Agonistas Muscarínicos/toxicidad , Pilocarpina/toxicidad , Factores Sexuales , Estado Epiléptico/inducido químicamente , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...