Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(3): e0261993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36917579

RESUMEN

With the global decline of freshwater fishes, quantifying the body size-specific habitat use of vulnerable species is crucial for accurately evaluating population health, identifying the effects of anthropogenic stressors, and directing effective habitat restoration. Populations of New Zealand's endemic kokopu species (Galaxias fasciatus, G. argenteus, and G. postvectis) have declined substantially over the last century in response to anthropogenic stressors, including habitat loss, migratory barriers, and invasive species. Despite well-understood habitat associations, key within-habitat features underpinning the reach-scale biomass of small and large kokopu remain unclear. Here, we investigated whether the total biomass of large (> 90 mm) size classes of each kokopu species and the composite biomass of all small (≤ 90 mm) kokopu were associated with components of the physical environment that provided refuge and prey resources across fifty-seven 50-m stream reaches. Because kokopu are nocturnal, populations were sampled by removal at night using headlamps and hand-nets until reaches were visually depleted. Based on Akaike's information criterion, greater large banded kokopu biomass was most parsimoniously explained by greater pool volume and forest cover, greater large giant kokopu biomass by greater bank cover and pool volume, and greater large shortjaw kokopu biomass by greater substrate size and pool volume. In contrast, greater composite small kokopu biomass was best explained by smaller substrate size, reduced bank cover, and greater pool volume. Local habitat associations therefore varied among kokopu species and size classes. Our study demonstrates the importance of considering the ontogenetic shift in species' habitat use and provides an effective modelling approach for quantifying size-specific local habitat use of stream-dwelling fish.


Asunto(s)
Ecosistema , Peces , Animales , Biomasa , Peces/fisiología , Agua Dulce , Ríos
2.
Sci Rep ; 12(1): 7740, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545696

RESUMEN

Marine heatwaves (MHWs) can cause dramatic changes to ecologically, culturally, and economically important coastal ecosystems. To date, MHW studies have focused on geographically isolated regions or broad-scale global oceanic analyses, without considering coastal biogeographical regions and seasons. However, to understand impacts from MHWs on diverse coastal communities, a combined biogeographical-seasonal approach is necessary, because (1) bioregions reflect community-wide temperature tolerances and (2) summer or winter heatwaves likely affect communities differently. We therefore carried out season-specific Theil-Sen robust linear regressions and Pettitt change point analyses from 1982 to 2021 on the number of events, number of MHW days, mean intensity, maximum intensity, and cumulative intensity of MHWs, for each of the world's 12 major coastal biogeographical realms. We found that 70% of 240 trend analyses increased significantly, 5% decreased and 25% were unaffected. There were clear differences between trends in metrics within biogeographical regions, and among seasons. For the significant increases, most change points occurred between 1998 and 2006. Regression slopes were generally positive across MHW metrics, seasons, and biogeographical realms as well as being highest after change point detection. Trends were highest for the Arctic, Northern Pacific, and Northern Atlantic realms in summer, and lowest for the Southern Ocean and several equatorial realms in other seasons. Our analysis highlights that future case studies should incorporate break point changes and seasonality in MHW analysis, to increase our understanding of how future, more frequent, and stronger MHWs will affect coastal ecosystems.


Asunto(s)
Benchmarking , Ecosistema , Océanos y Mares , Estaciones del Año , Temperatura
4.
Nat Commun ; 13(1): 581, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102155

RESUMEN

Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.g. food) within and between co-occurring foundation species. We show that positive and additive effects across the three axes of heterogeneity are common, providing a compelling mechanistic insight into the universal importance of habitat heterogeneity in promoting biodiversity via cascades of facilitative interactions. Because many aspects of habitat heterogeneity can be controlled through restoration and management interventions, our findings are directly relevant to biodiversity conservation.


Asunto(s)
Biodiversidad , Animales , Geografía , Especificidad de la Especie
5.
Proc Biol Sci ; 289(1967): 20211982, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35042421

RESUMEN

Despite the demonstrated benefits of marine protected areas, there has been relatively little dialogue about freshwater protected areas (FPAs) even though some have been established to protect freshwater species from recreational and commercial fishers. After populations recover from fishing pressure, abundances and densities of formerly fished species increase, and we should therefore expect changes in demographic traits compared to those in exploited populations. To test this, we used capture-mark-recapture data for 10 Galaxias maculatus populations across a density gradient mediated by different degrees of fishery closure. We examined the extent to which density-dependent (DD) and density-independent (DI) effects interact to affect specific growth rates in post-recruit populations. We found that population density, stream temperature and individual size interact to affect growth rates. When population densities were high, compensatory responses of far slower growth rates were strongest, indicating that DD growth is a key mechanism regulating post-recruit populations of G. maculatus. This study emphasizes the importance of understanding DD and DI processes, their interactions, function and effectiveness for freshwater fisheries management. For FPAs to be effective, the extent and quality of target species' habitats must serve as key criteria for protection to alleviate competition for limited resources that underpins DD processes.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ecosistema , Peces , Agua Dulce , Temperatura
6.
Sci Total Environ ; 746: 141241, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763609

RESUMEN

Vegetated coastal ecosystems (VCEs) are in global decline and sensitive to climate change; yet may also assist its mitigation through high rates of 'blue' carbon sequestration and storage. Alterations of relative sea-level (RSL) are pervasive drivers of change that reflect the interaction between tidal inundation regimes and ground surface elevation. Although many studies have investigated sediment accretion within VCEs, relatively few have addressed spatiotemporal patterns of resilience in response to RSL change. In this study, we used high resolution elevation models and field surveys to identify RSL changes and socio-ecological responses in a tidal lagoon system following earthquakes in New Zealand. We expected that vegetation changes would result from RSL effects caused by surface-elevation changes in intertidal zones. Elevation measurements showed a sequence of vertical displacements resulting from major earthquakes in 2011 and 2012, and additional surface-elevation loss since. VCE losses were recorded over an 8 year period post-2011 in response to high rates of RSL rise (up to 41 mm yr-1). Anthropogenic factors influenced the pattern of losses and illustrate opportunities for managing risks to other VCEs facing RSL rise. Four key principles for building VCE resilience were identified: i) anthropogenic encroachment results in resilience loss due to the need for landward migration when changes exceed the tolerance thresholds of VCEs at their lower elevational limits; ii) connectivity losses exacerbate encroachment effects, and conversely, are a practical focus for management; iii) landscape-scale risk exposure is disproportionately influenced by the largest wetland remnants illustrating the importance of site-specific vulnerabilities and their assessment; and iv) establishing new protected areas to accommodate the movement of VCEs is needed, and requires a combination of land tenure rearrangements and connectivity conservation. Embracing these concepts offers promise for improving whole-system resilience to help address the challenge of global climate change.

7.
Oecologia ; 190(1): 179-193, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30976904

RESUMEN

Understanding how biodiversity and its components of alpha, beta, and gamma vary over spatial and temporal scales and across communities is crucial to mitigating stressors of ecosystems. Marine communities present several problems in partitioning diversity over fine spatial scales, such as tidal zones, and temporal scales relating to seasonal occurrences of species and recovery responses to impacts. This study uses an experimental approach to test disturbance effects on beta diversity in algal communities in southern New Zealand. Dominant canopies in mid-shore Hormosira banksii and low-shore Durvillaea poha communities were removed and diversity metrics assessed, including additive partitioning, permutational dispersion, and nestedness and turnover analyses. Over 2 years, 258 species were found. Species richness was greater where canopies remained intact in Hormosira communities compared to removal plots, but, in Durvillaea communities, controls and removals had similar richness. In both communities, ß-diversity was 1.5-3.9 times greater than α-diversity, with the temporal component ßt being 1.2-2.4 × greater than the spatial component. Hormosira communities exhibited high nestedness, with species in removal plots being a subset of those in controls. In Durvillaea communities, however, turnover was high and nestedness low, because removal plots had a different species assemblage than controls. Multivariate analyses showed that species occurrences and abundances remained different in controls and removals in both communities over 2 years. Differences in diversity components between communities were related to environmental differences to which they are exposed, including desiccation and wave forces, and the relative importance of facilitation and competition in the different communities.


Asunto(s)
Biodiversidad , Ecosistema , Nueva Zelanda , Plantas
8.
Nat Ecol Evol ; 2(4): 634-639, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507379

RESUMEN

It has long been recognized that primary foundation species (FS), such as trees and seagrasses, enhance biodiversity. Among the species facilitated are secondary FS, including mistletoes and epiphytes. Case studies have demonstrated that secondary FS can further modify habitat-associated organisms ('inhabitants'), but their net effects remain unknown. Here we assess how inhabitants, globally, are affected by secondary FS. We extracted and calculated 2,187 abundance and 397 richness Hedges' g effect sizes from 91 and 50 publications, respectively. A weighted meta-analysis revealed that secondary FS significantly enhanced the abundance and richness of inhabitants compared to the primary FS alone. This indirect facilitation arising through sequential habitat formation was consistent across environmental and experimental conditions. Complementary unweighted analyses on log response ratios revealed that the magnitude of these effects was similar to the global average strength of direct facilitation from primary foundation species and greater than the average strength of trophic cascades, a widely recognized type of indirect facilitation arising through sequential consumption. The finding that secondary FS enhance the abundance and richness of inhabitants has important implications for understanding the mechanisms that regulate biodiversity. Integrating secondary FS into conservation practice will improve our ability to protect biodiversity and ecosystem function.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Plantas , Animales , Ecosistema , Densidad de Población
9.
J Phycol ; 53(3): 476-485, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28207158

RESUMEN

Global declines of macroalgal beds in coastal waters have prompted a plethora of studies attempting to understand the drivers of change within dynamic nearshore ecosystems. Photosynthetic measurements are good tools for assessing the consequences of numerous stressors of macroalgae, but there is somewhat of a disconnection between studies that focus on organism-specific ecophysiological responses and those that address causes and consequences of shifts in macroalgal productivity. Our goal is to highlight the applications of two complementary tools for measuring photosynthesis-variable chlorophyll a fluorescence and photorespirometry-and provide guidance for the integration of physiology and ecology to understand the drivers of change in macroalgal communities. Photorespirometry can provide an integrated measure of whole-community metabolism, including an estimate of the physiological costs associated with stressors, while fluorescence-based techniques provide point measures of the efficiency of the photosynthetic apparatus within communities. Variable chlorophyll a fluorescence does not provide an estimate of carbon balance or integrated photosynthesis across either whole plants or whole communities but can be used to estimate the contribution of individual community components in the dynamic subcanopy environment to help us understand the mechanisms underlying observed responses. We highlight the importance of the highly dynamic light environment within macroalgal communities and call for better integration of physiological techniques in an ecological context to enhance our understanding of the responses of whole communities to local and global stressors.


Asunto(s)
Procesos Autotróficos , Fluorometría , Fotosíntesis , Algas Marinas/fisiología , Clorofila/metabolismo , Clorofila A , Fluorescencia
10.
Ecol Evol ; 6(22): 8291-8303, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27878096

RESUMEN

Many studies have documented habitat cascades where two co-occurring habitat-forming species control biodiversity. However, more than two habitat-formers could theoretically co-occur. We here documented a sixth-level habitat cascade from the Avon-Heathcote Estuary, New Zealand, by correlating counts of attached inhabitants to the size and accumulated biomass of their biogenic hosts. These data revealed predictable sequences of habitat-formation (=attachment space). First, the bivalve Austrovenus provided habitat for green seaweeds (Ulva) that provided habitat for trochid snails in a typical estuarine habitat cascade. However, the trochids also provided habitat for the nonnative bryozoan Conopeum that provided habitat for the red seaweed Gigartina that provided habitat for more trochids, thereby resetting the sequence of the habitat cascade, theoretically in perpetuity. Austrovenus is here the basal habitat-former that controls this "long" cascade. The strength of facilitation increased with seaweed frond size, accumulated seaweed biomass, accumulated shell biomass but less with shell size. We also found that Ulva attached to all habitat-formers, trochids attached to Ulva and Gigartina, and Conopeum and Gigartina predominately attached to trochids. These "affinities" for different habitat-forming species probably reflect species-specific traits of juveniles and adults. Finally, manipulative experiments confirmed that the amount of seaweed and trochids was important and consistent regulators of the habitat cascade in different estuarine environments. We also interpreted this cascade as a habitat-formation network that describes the likelihood of an inhabitant being found attached to a specific habitat-former. We conclude that the strength of the cascade increased with the amount of higher-order habitat-formers, with differences in form and function between higher and lower-order habitat-formers, and with the affinity of inhabitants for higher-order habitat-formers. We suggest that long habitat cascades are common where species traits allow for physical attachment to other species, such as in marine benthic systems and old forest.

11.
PLoS One ; 9(12): e114146, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25438045

RESUMEN

Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics. Pioneering studies over 70 years ago showed how different pigmentation of red, green and brown algae affected absorption spectra, action spectra, and photosynthetic efficiency across the PAR (photosynthetically active radiation) spectrum. Little of this, however, has found its way into ecological syntheses of the impacts of optically active contaminants on coastal macroalgal communities. Here we test the ability of macroalgal assemblages composed of multiple functional groups (including representatives from the chlorophyta, rhodophyta and phaeophyta) to use the total light resource, including different light wavelengths and examine the effects of suspended sediments on the penetration and spectral quality of light in coastal waters. We show that assemblages composed of multiple functional groups are better able to use light throughout the PAR spectrum. Macroalgal assemblages with four sub-canopy species were between 50-75% more productive than assemblages with only one or two sub-canopy species. Furthermore, attenuation of the PAR spectrum showed both a loss of quanta and a shift in spectral distribution with depth across coastal waters of different clarity, with consequences to productivity dynamics of diverse layered assemblages. The processes of light complementarity may help provide a mechanistic understanding of how altered turbidity affects macroalgal assemblages in coastal waters, which are increasingly threatened by diminishing light quantity and altered spectral distributions through sedimentation and eutrophication.


Asunto(s)
Chlorophyta/fisiología , Phaeophyceae/fisiología , Rhodophyta/fisiología , Algas Marinas/fisiología , Ecosistema , Luz , Fotosíntesis
12.
PLoS One ; 8(9): e74413, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058560

RESUMEN

Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP). The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C) averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP) Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in sub-canopy NPP, the impacts of which may be exacerbated over longer time-scales and could result in declines in sub-canopy species richness and abundance.


Asunto(s)
Ecosistema , Algas Marinas/crecimiento & desarrollo , Algas Marinas/fisiología , Temperatura , Aerobiosis , Biomasa , Humanos , Fotosíntesis
13.
PLoS One ; 8(6): e65656, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755264

RESUMEN

Numerous studies have applied genetic tools to the identification of source populations and transport pathways for invasive species. However, there are many gaps in the knowledge obtained from such studies because comprehensive and meaningful spatial sampling to meet these goals is difficult to achieve. Sampling populations as they arrive at the border should fill the gaps in source population identification, but such an advance has not yet been achieved with genetic data. Here we use previously acquired genetic data to assign new incursions as they invade populations within New Zealand ports and marinas. We also investigated allelelic frequency change in these recently established populations over a two-year period, and assessed the effect of temporal genetic sampling on our ability to assign new incursions to their population of source. We observed shifts in the allele frequencies among populations, as well as the complete loss of some alleles and the addition of alleles novel to New Zealand, within these recently established populations. There was no significant level of genetic differentiation observed in our samples between years, and the use of these temporal data did alter the assignment probability of new incursions. Our study further suggests that new incursions can add genetic variation to the population in a single introduction event as the founders themselves are often more genetically diverse than theory initially predicted.


Asunto(s)
Alelos , ADN Mitocondrial/genética , Haplotipos , Especies Introducidas , Urocordados/genética , Animales , Secuencia de Bases , Frecuencia de los Genes , Variación Genética , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Nueva Zelanda , Fenotipo , Manejo de Especímenes/métodos , Factores de Tiempo
14.
PLoS One ; 6(10): e26986, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22066024

RESUMEN

Macroalgal assemblages are some of the most productive systems on earth and they contribute significantly to nearshore ecosystems. Globally, macroalgal assemblages are increasingly threatened by anthropogenic activities such as sedimentation, eutrophication and climate change. Despite this, very little research has considered the potential effects of canopy loss on primary productivity, although the literature is rich with evidence showing the ecological effects of canopy disturbance. In this study we used experimental removal plots of habitat-dominating algae (Order Fucales) that had been initiated several years previously to construct a chronosequence of disturbed macroalgal communities and to test if there were legacy effects of canopy loss on primary productivity. We used in situ photo-respirometry to test the primary productivity of algal assemblages in control and removal plots at two intertidal elevations. In the mid tidal zone assemblage, the removal plots at two sites had average primary productivity values of only 40% and 60% that of control areas after 90 months. Differences in productivity were associated with lower biomass and density of the fucoid algal canopy and lower taxa richness in the removal plots after 90 months. Low-shore plots, established three years earlier, showed that the loss of the large, dominant fucoid resulted in at least 50% less primary productivity of the algal assemblage than controls, which lasted for 90 months; other smaller fucoid species had recruited but they were far less productive. The long term reduction in primary productivity following a single episode of canopy loss of a dominant species in two tidal zones suggests that these assemblages are not very resilient to large perturbations. Decreased production output may have severe and long-lasting consequences on the surrounding communities and has the potential to alter nutrient cycling in the wider nearshore environment.


Asunto(s)
Ecosistema , Algas Marinas/crecimiento & desarrollo , Nueva Zelanda , Factores de Tiempo , Movimientos del Agua
15.
PLoS One ; 6(9): e24318, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931680

RESUMEN

Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers. We hypothesized that the survival of these eggs is greatly affected by the micro-environment afforded by vegetation, particularly relating to temperature, humidity and UVB radiation. We experimentally reduced riparian vegetation height and altered shading characteristics, tracked egg survival, and used small ground-level temperature, humidity and UVB sensors to relate survival to ground-level effects around egg masses. The ground-level physical environment was markedly different from the surrounding ambient conditions. Tall dense riparian vegetation modified ambient conditions to produce a buffered temperature regime with constant high relative humidity, generally above 90%, and negligible UVB radiation at ground-level. Where vegetation height was reduced, frequent high temperatures, low humidity, and high UVB irradiances reduced egg survival by up to 95%. Temperature effects on egg survival were probably indirect, through reduced humidity, because developing eggs are known to survive in a wide range of temperatures. In this study, it was remarkable how such small variations in relatively small sites could have such a large effect on egg survival. It appears that modifications to riparian vegetation and the associated changes in the physical conditions of egg laying sites are major mechanisms affecting egg survival. The impacts associated with vegetational changes through human-induced disturbances are complex yet potentially devastating. These effects are particularly important because they affect a very small portion of habitat that is required to complete the life history of a species, despite the wide distribution of adults and juveniles across aquatic and marine environments.


Asunto(s)
Ecosistema , Humedad , Osmeriformes/fisiología , Óvulo/efectos de la radiación , Temperatura , Rayos Ultravioleta , Animales , Análisis de Componente Principal , Análisis de Supervivencia , Factores de Tiempo
16.
PLoS One ; 6(8): e23958, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21887351

RESUMEN

Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.


Asunto(s)
Ecología , Ecosistema , Biología Marina , Conducta Predatoria , Animales , Bivalvos , Larva , Nueva Zelanda
17.
PLoS One ; 6(2): e16755, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21364988

RESUMEN

The solitary ascidian Styela clava Herdman, 1882 is considered to be native to Japan, Korea, northern China and the Russian Federation in the NW Pacific, but it has spread globally over the last 80 years and is now established as an introduced species on the east and west coasts of North America, Europe, Australia and New Zealand. In eastern Canada it reaches sufficient density to be a serious pest to aquaculture concerns. We sequenced a fragment of the cytochrome oxidase subunit I mitochondrial gene (COI) from a total of 554 individuals to examine the genetic relationships of 20 S. clava populations sampled throughout the introduced and native ranges, in order to investigate invasive population characteristics. The data presented here show a moderate level of genetic diversity throughout the northern hemisphere. The southern hemisphere (particularly New Zealand) displays a greater amount of haplotype and nucleotide diversity in comparison. This species, like many other invasive species, shows a range of genetic diversities among introduced populations independent of the age of incursion. The successful establishment of this species appears to be associated with multiple incursions in many locations, while other locations appear to have experienced rapid expansion from a potentially small population with reduced genetic diversity. These contrasting patterns create difficulties when attempting to manage and mitigate a species that continues to spread among ports and marinas around the world.


Asunto(s)
Especies Introducidas , Urocordados/clasificación , Urocordados/genética , Animales , Australia , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/análisis , Complejo IV de Transporte de Electrones/genética , Europa (Continente) , Variación Genética , Genética de Población , Japón , Nueva Zelanda , Noroeste de Estados Unidos , Filogenia , Filogeografía/métodos , Dinámica Poblacional , Análisis de Secuencia de ADN
18.
Oecologia ; 166(1): 131-40, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21076966

RESUMEN

Many species traverse multiple habitats across ecosystems to complete their life histories. Degradation of critical, life stage-specific habitats can therefore lead to population bottlenecks and demographic deficits in sub-populations. The riparian zone of waterways is one of the most impacted areas of the coastal zone because of urbanisation, deforestation, farming and livestock grazing. We hypothesised that sink populations can result from alterations of habitats critical to the early life stages of diadromous fish that use this zone, and tested this with field-based sampling and experiments. We found that for Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, obligate riparian spawning habitat was very limited and highly vulnerable to disturbance across 14 rivers in New Zealand. Eggs were laid only during spring tides, in the highest tidally influenced vegetation of waterways. Egg survival increased to >90% when laid in three riparian plant species and where stem densities were great enough to prevent desiccation, compared to no survival where vegetation was comprised of other species or was less dense. Experimental exclusion of livestock, one of the major sources of riparian degradation in rural waterways, resulted in quick regeneration, a tenfold increase in egg laying by fish and a threefold increase in survival, compared to adjacent controls. Overall, there was an inverse relationship between river size and egg production. Some of the largest rivers had little or no spawning habitat and very little egg production, effectively becoming sink populations despite supporting large adult populations, whereas some of the smallest pristine streams produced millions of eggs. We demonstrate that even a wide-ranging species with many robust adult populations can be compromised if a stage-specific habitat required to complete a life history is degraded by localised or more diffuse impacts.


Asunto(s)
Ecosistema , Osmeriformes/crecimiento & desarrollo , Ríos , Agrostis , Animales , Nueva Zelanda , Dinámica Poblacional
19.
Ecol Lett ; 13(9): 1160-71, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20602628

RESUMEN

Species interactions come in a variety of forms, from weak to strong, and negative or positive, each with unique consequences for local community structure. However, interactions depend on several biotic, abiotic and scale-dependent variables that make their magnitude and direction difficult to predict. Here, we quantify the relative impacts of multiple factors on species interactions for a diverse array of intertidal organisms, using our own experiments across a range of environments in New Zealand and North America. Interaction strengths are related to organism body size and trophic level, but are relatively insensitive to environmental conditions associated with tidal height. Although species at higher trophic levels exert stronger per-capita effects on other taxa, their population-level impacts are equivalent to basal trophic groups. This indicates that interaction intensity is largely based on requirements for resources, such as food or space, that follow allometric scaling rules. These results demonstrate the potential to predict interactivity based on simple criteria without detailed information on particular species or communities.


Asunto(s)
Ecosistema , Animales , Tamaño Corporal , Cadena Alimentaria , Invertebrados/anatomía & histología , Invertebrados/fisiología , Nueva Zelanda , América del Norte , Océanos y Mares , Phaeophyceae/fisiología , Densidad de Población , Dinámica Poblacional , Estrés Fisiológico , Movimientos del Agua , Humedales
20.
Ecology ; 91(1): 201-11, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20380209

RESUMEN

Consumers that forage across habitats can affect communities by altering the abundance and distribution of key species. In marine communities, studies of trophic interactions have generally focused on the effects of herbivorous and predatory invertebrates on benthic algae and mussel populations. However, large mobile consumers that move across habitats, such as fishes, can strongly affect community dynamics through consumption of habitat-dominating species, but their effects often vary over environmental gradients. On temperate rocky shores, herbivorous fishes are generally a small part of the fish fauna compared to the tropics, and there is sparse evidence that they play a major direct role in algal community dynamics, particularly of large brown algae that dominate many reefs. In New Zealand, however, a wide-ranging herbivorous fish, Odax pullus, feeds exclusively on macroalgae, including Durvillaea antarctica, a large low-intertidal fucoid reaching 10 m in length and 70 kg in mass. In four experiments we tested the extent of fish herbivory and how it was affected by algal canopy structure across a gradient of wave exposure at multiple sites. Exclusion experiments showed that fish impacts greatly reduced the cover and biomass of Durvillaea and that these effects decreased with increasing wave stress and algal canopy cover, effectively restricting the alga to exposed conditions. Almost all plants were entirely removed by fish where there was a sparse algal canopy in sheltered and semi-exposed sites, but there was significantly less grazing in exposed sites. Recruit Durvillaea beneath canopies were less affected by fish grazing, but they grew slowly. Successful natural recruitment, therefore, occurred almost exclusively on exposed shores outside canopies where many plants escaped severe grazing, and growth to maturity was far greater than elsewhere. Such large and direct impacts on the local and regional distribution of large brown algal populations by mobile vertebrate consumers are rare and were mediated by an environmental gradient and plant density, both of which interact with algal demographics. The study highlights that, even though herbivorous fish diversity may be low, the impacts of particular species may still be high, even in cool temperate waters where fish herbivory is usually considered to be minimal.


Asunto(s)
Eucariontes/fisiología , Conducta Alimentaria/fisiología , Peces/fisiología , Animales , Nueva Zelanda , Océanos y Mares , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...