Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631626

RESUMEN

An easy and viable crosslinking procedure by click-chemistry (click-crosslinking) of hyaluronic acid (HA) was developed. In particular, the clickable propargyl groups of hyaluronane-based HA-FA-Pg graft copolymers showing low and medium molecular weight values were exploited in crosslinking by click-chemistry by using a hexa(ethylene glycol) spacer. The resulting HA-FA-HEG-CL materials showed an apparent lack of in vitro cytotoxic effects, tuneable water affinity, and rheological properties according to the crosslinking degree that suggests their applicability in different biomedical fields.

2.
Transl Vis Sci Technol ; 8(5): 9, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31588374

RESUMEN

PURPOSE: We evaluated chemical composition, and molecular and rheological properties in 10 commercially available silicone oils (SilOils), focusing on siloxane chains of low molecular weight (LMW components, LMWC) that are known to be "impurities" produced during the SilOil synthesis process. METHODS: We assessed the type of SilOil polymer and molecular weight distribution (MWD) by spectroscopy and conventional size exclusion chromatography, respectively. From the Cumulative MWD, we calculated the fractions of LMWC with molecular weight (M): ≤2000, ≤5000, and ≤10,000 g/mol. Due to the low MW, the content of LMWC with M ≤1000 g/mol was determined by gas chromatography-mass spectrometry. The dynamic viscosity (η) was assessed by rotational rheometry. RESULTS: For all SilOils, the polymer was polydimethylsiloxane. The samples differed significantly in terms of MWD and relative LMWC fractions. Specifically, the relative fraction of all LMWC (M ≤10,000 g/mol) ranged from 2.31% to 9.40% and the content of LMWC with M ≤1000 g/mol also varied significantly (range, 51-1151 ppm). The η values were different between the SilOils, and, for many of them, from the declared viscosity. CONCLUSIONS: Commercially available SilOils differ significantly in molecular and rheologic features. These compounds contain a significant amount of LMWC, "impurities" generated during the synthesis process, acting as emulsifier, potentially inducing ocular inflammation and toxicity. TRANSLATIONAL RELEVANCE: The amount of impurities in different SilOils may influence significantly their biocompatibility.

3.
Phys Chem Chem Phys ; 13(40): 18005-14, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21915408

RESUMEN

Solid state luminescent materials are the subject of ever growing interest both from a scientific and a technological point of view. Aggregation caused quenching (ACQ) processes however represent an obstacle to the development of most luminogens in the condensed phase. This is why particularly fascinating are those materials showing higher emission intensity in the solid state than in solution. Here we report on three 4-dialkylamino-2-benzylidene malonic acid dialkyl esters, very simple push-pull molecules, which are hardly emissive in solution and in the amorphous phase but become good emitters in the crystalline phase according to what has been indicated as crystallization induced emission (CIE). Thanks to combined emission and NMR spectroscopies at different temperatures on the prototype compound 4-dimethylamino-2-benzylidene malonic acid dimethyl ester in solution, we give full evidence that a restricted intramolecular rotation (RIR) phenomenon, in particular the hindered rotation around the aryl main axis of the compound, is at the origin of this behaviour. In addition, solid state photophysical and X-ray diffraction structural characterization allow us to identify J-dimeric interactions as responsible for the particularly intense emission of two of the three compounds. Moreover, by exploiting the compounds' acidochromic properties, applications in sensors and optoelectronics are envisaged.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...