Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Popul Biol ; 156: 130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387801
2.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648662

RESUMEN

Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.


Asunto(s)
Smegmamorpha , Animales , Smegmamorpha/genética , Tasa de Mutación , Filogenia , Mutación , Mutación de Línea Germinal
3.
Nat Ecol Evol ; 7(7): 1114-1130, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37268856

RESUMEN

The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.


Asunto(s)
Evolución Molecular , Cromosoma Y , Animales , Masculino , Cromosoma Y/genética , Primates/genética
4.
Science ; 380(6648): 913-924, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37262173

RESUMEN

Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.


Asunto(s)
Evolución Molecular , Primates , Animales , Humanos , Genoma , Genómica , Filogenia , Primates/anatomía & histología , Primates/clasificación , Primates/genética , Reordenamiento Génico , Encéfalo/anatomía & histología
5.
Sci Adv ; 9(22): eadd3580, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37262187

RESUMEN

Although species can arise through hybridization, compelling evidence for hybrid speciation has been reported only rarely in animals. Here, we present phylogenomic analyses on genomes from 12 macaque species and show that the fascicularis group originated from an ancient hybridization between the sinica and silenus groups ~3.45 to 3.56 million years ago. The X chromosomes and low-recombination regions exhibited equal contributions from each parental lineage, suggesting that they were less affected by subsequent backcrossing and hence could have played an important role in maintaining hybrid integrity. We identified many reproduction-associated genes that could have contributed to the development of the mixed sexual phenotypes characteristic of the fascicularis group. The phylogeny within the silenus group was also resolved, and functional experimentation confirmed that all extant Western silenus species are susceptible to HIV-1 infection. Our study provides novel insights into macaque evolution and reveals a hybrid speciation event that has occurred only very rarely in primates.


Asunto(s)
Genómica , Macaca , Animales , Macaca/genética , Filogenia , Genoma , Hibridación Genética
6.
Cell Genom ; 3(3): 100274, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950386

RESUMEN

The X chromosome in non-African humans shows less diversity and less Neanderthal introgression than expected from neutral evolution. Analyzing 162 human male X chromosomes worldwide, we identified fourteen chromosomal regions where nearly identical haplotypes spanning several hundred kilobases are found at high frequencies in non-Africans. Genetic drift alone cannot explain the existence of these haplotypes, which must have been associated with strong positive selection in partial selective sweeps. Moreover, the swept haplotypes are entirely devoid of archaic ancestry as opposed to the non-swept haplotypes in the same genomic regions. The ancient Ust'-Ishim male dated at 45,000 before the present (BP) also carries the swept haplotypes, implying that selection on the haplotypes must have occurred between 45,000 and 55,000 years ago. Finally, we find that the chromosomal positions of sweeps overlap previously reported hotspots of selective sweeps in great ape evolution, suggesting a mechanism of selection unique to X chromosomes.

7.
Nature ; 613(7943): 308-316, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544022

RESUMEN

The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals1-6, probably owing to the evolutionary pressure on males to be reproductively successful7. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Espermatogénesis , Testículo , Animales , Masculino , Cromatina/genética , Mamíferos/genética , Meiosis/genética , Espermatogénesis/genética , Testículo/citología , Transcriptoma , Análisis de la Célula Individual , Aves/genética , Primates/genética , Regulación de la Expresión Génica , Espermatogonias/citología , Células de Sertoli/citología , Cromosoma X/genética , Cromosoma Y/genética , Compensación de Dosificación (Genética) , Silenciador del Gen
8.
Genome Biol ; 23(1): 215, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253794

RESUMEN

BACKGROUND: The pseudoautosomal region 1 (PAR1) is a 2.7 Mb telomeric region of human sex chromosomes. PAR1 has a crucial role in ensuring proper segregation of sex chromosomes during male meiosis, exposing it to extreme recombination and mutation processes. We investigate PAR1 evolution using population genomic datasets of extant humans, eight populations of great apes, and two archaic human genome sequences. RESULTS: We find that PAR1 is fast evolving and closer to evolutionary nucleotide equilibrium than autosomal telomeres. We detect a difference between substitution patterns and extant diversity in PAR1, mainly driven by the conflict between strong mutation and recombination-associated fixation bias at CpG sites. We detect excess C-to-G mutations in PAR1 of all great apes, specific to the mutagenic effect of male recombination. Despite recent evidence for Y chromosome introgression from humans into Neanderthals, we find that the Neanderthal PAR1 retained similarity to the Denisovan sequence. We find differences between substitution spectra of these archaics suggesting rapid evolution of PAR1 in recent hominin history. Frequency analysis of alleles segregating in females and males provided no evidence for recent sexual antagonism in this region. We study repeat content and double-strand break hotspot regions in PAR1 and find that they may play roles in ensuring the obligate X-Y recombination event during male meiosis. CONCLUSIONS: Our study provides an unprecedented quantification of population genetic forces governing PAR1 biology across extant and extinct hominids. PAR1 evolutionary dynamics are predominantly governed by recombination processes with a strong impact on mutation patterns across all species.


Asunto(s)
Hominidae , Regiones Pseudoautosómicas , Animales , Femenino , Hominidae/genética , Humanos , Masculino , Nucleótidos , Receptor PAR-1/genética , Cromosoma Y/genética
9.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35447073

RESUMEN

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Asunto(s)
Marsupiales , Animales , Australia , Evolución Molecular , Especiación Genética , Genoma , Marsupiales/genética , Fenotipo , Filogenia
10.
Nat Commun ; 12(1): 5317, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493715

RESUMEN

After the main Out-of-Africa event, humans interbred with Neanderthals leaving 1-2% of Neanderthal DNA scattered in small fragments in all non-African genomes today. Here we investigate what can be learned about human demographic processes from the size distribution of these fragments. We observe differences in fragment length across Eurasia with 12% longer fragments in East Asians than West Eurasians. Comparisons between extant populations with ancient samples show that these differences are caused by different rates of decay in length by recombination since the Neanderthal admixture. In concordance, we observe a strong correlation between the average fragment length and the mutation accumulation, similar to what is expected by changing the ages at reproduction as estimated from trio studies. Altogether, our results suggest differences in the generation interval across Eurasia, by up 10-20%, over the past 40,000 years. We use sex-specific mutation signatures to infer whether these changes were driven by shifts in either male or female age at reproduction, or both. We also find that previously reported variation in the mutational spectrum may be largely explained by changes to the generation interval. We conclude that Neanderthal fragment lengths provide unique insight into differences among human populations over recent history.


Asunto(s)
ADN Antiguo/análisis , Flujo Génico , Genoma Humano , Mutación , Hombre de Neandertal/genética , Animales , Asia , Cruzamientos Genéticos , Europa (Continente) , Femenino , Historia del Siglo XXI , Historia Antigua , Humanos , Masculino , Polimorfismo de Longitud del Fragmento de Restricción
11.
Mol Biol Evol ; 38(12): 5480-5490, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34410427

RESUMEN

Homologous recombination is expected to increase natural selection efficacy by decoupling the fate of beneficial and deleterious mutations and by readily creating new combinations of beneficial alleles. Here, we investigate how the proportion of amino acid substitutions fixed by adaptive evolution (α) depends on the recombination rate in bacteria. We analyze 3,086 core protein-coding sequences from 196 genomes belonging to five closely related species of the genus Rhizobium. These genes are found in all species and do not display any signs of introgression between species. We estimate α using the site frequency spectrum (SFS) and divergence data for all pairs of species. We evaluate the impact of recombination within each species by dividing genes into three equally sized recombination classes based on their average level of intragenic linkage disequilibrium. We find that α varies from 0.07 to 0.39 across species and is positively correlated with the level of recombination. This is both due to a higher estimated rate of adaptive evolution and a lower estimated rate of nonadaptive evolution, suggesting that recombination both increases the fixation probability of advantageous variants and decreases the probability of fixation of deleterious variants. Our results demonstrate that homologous recombination facilitates adaptive evolution measured by α in the core genome of prokaryote species in agreement with studies in eukaryotes.


Asunto(s)
Recombinación Genética , Rhizobium , Evolución Molecular , Mutación , Rhizobium/genética , Selección Genética , Suelo
12.
Nature ; 594(7862): 227-233, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33910227

RESUMEN

The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.


Asunto(s)
Callithrix/genética , Diploidia , Evolución Molecular , Genoma/genética , Genómica/normas , Animales , Investigación Biomédica , Variaciones en el Número de Copia de ADN , Femenino , Mutación de Línea Germinal/genética , Haplotipos/genética , Heterocigoto , Humanos , Mutación INDEL/genética , Masculino , Estándares de Referencia , Selección Genética , Diferenciación Sexual/genética , Cromosoma Y/genética
13.
Science ; 369(6511): 1565-1566, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32973019
14.
Nature ; 582(7810): 78-83, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494067

RESUMEN

Human evolutionary history is rich with the interbreeding of divergent populations. Most humans outside of Africa trace about 2% of their genomes to admixture from Neanderthals, which occurred 50-60 thousand years ago1. Here we examine the effect of this event using 14.4 million putative archaic chromosome fragments that were detected in fully phased whole-genome sequences from 27,566 Icelanders, corresponding to a range of 56,388-112,709 unique archaic fragments that cover 38.0-48.2% of the callable genome. On the basis of the similarity with known archaic genomes, we assign 84.5% of fragments to an Altai or Vindija Neanderthal origin and 3.3% to Denisovan origin; 12.2% of fragments are of unknown origin. We find that Icelanders have more Denisovan-like fragments than expected through incomplete lineage sorting. This is best explained by Denisovan gene flow, either into ancestors of the introgressing Neanderthals or directly into humans. A within-individual, paired comparison of archaic fragments with syntenic non-archaic fragments revealed that, although the overall rate of mutation was similar in humans and Neanderthals during the 500 thousand years that their lineages were separate, there were differences in the relative frequencies of mutation types-perhaps due to different generation intervals for males and females. Finally, we assessed 271 phenotypes, report 5 associations driven by variants in archaic fragments and show that the majority of previously reported associations are better explained by non-archaic variants.


Asunto(s)
Introgresión Genética/genética , Genoma Humano/genética , Genómica , Mutación , Hombre de Neandertal/genética , Animales , Femenino , Estudios de Asociación Genética , Haploidia , Humanos , Islandia , Masculino , Fenotipo , Filogenia
15.
Microb Genom ; 6(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32176601

RESUMEN

Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using de novo assembly of 196 Rhizobium leguminosarum sv. trifolii genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.


Asunto(s)
Proteínas Bacterianas/genética , Plásmidos/genética , Rhizobium leguminosarum/genética , Trifolium/microbiología , Secuenciación Completa del Genoma/métodos , Introgresión Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Desequilibrio de Ligamiento , Filogenia , Raíces de Plantas/microbiología , Rhizobium leguminosarum/clasificación , Selección Genética , Simbiosis
16.
Nat Commun ; 11(1): 253, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937774

RESUMEN

Colonization of new habitats is expected to require genetic adaptations to overcome environmental challenges. Here, we use full genome re-sequencing and extensive common garden experiments to investigate demographic and selective processes associated with colonization of Japan by Lotus japonicus over the past ~20,000 years. Based on patterns of genomic variation, we infer the details of the colonization process where L. japonicus gradually spread from subtropical conditions to much colder climates in northern Japan. We identify genomic regions with extreme genetic differentiation between northern and southern subpopulations and perform population structure-corrected association mapping of phenotypic traits measured in a common garden. Comparing the results of these analyses, we find that signatures of extreme subpopulation differentiation overlap strongly with phenotype association signals for overwintering and flowering time traits. Our results provide evidence that these traits were direct targets of selection during colonization and point to associated candidate genes.


Asunto(s)
Aclimatación/genética , Lotus/genética , Evolución Biológica , Genes de Plantas/genética , Variación Genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Genotipo , Geografía , Japón , Lotus/crecimiento & desarrollo , Lotus/fisiología , Fenotipo , Selección Genética
17.
Nat Ecol Evol ; 3(5): 859, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30988499

RESUMEN

In the version of this article initially published, Tomas Marques-Bonet was missing the following affiliations: Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; and Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain. The affiliations have been added in the PDF and HTML versions of the article.

18.
Mol Biol Evol ; 36(6): 1281-1293, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912801

RESUMEN

In species with chromosomal sex determination, X chromosomes are predicted to evolve faster than autosomes because of positive selection on recessive alleles or weak purifying selection. We investigated X chromosome evolution in Stegodyphus spiders that differ in mating system, sex ratio, and population dynamics. We assigned scaffolds to X chromosomes and autosomes using a novel method based on flow cytometry of sperm cells and reduced representation sequencing. We estimated coding substitution patterns (dN/dS) in a subsocial outcrossing species (S. africanus) and its social inbreeding and female-biased sister species (S. mimosarum), and found evidence for faster-X evolution in both species. X chromosome-to-autosome diversity (piX/piA) ratios were estimated in multiple populations. The average piX/piA estimates of S. africanus (0.57 [95% CI: 0.55-0.60]) was lower than the neutral expectation of 0.75, consistent with more hitchhiking events on X-linked loci and/or a lower X chromosome mutation rate, and we provide evidence in support of both. The social species S. mimosarum has a significantly higher piX/piA ratio (0.72 [95% CI: 0.65-0.79]) in agreement with its female-biased sex ratio. Stegodyphus mimosarum also have different piX/piA estimates among populations, which we interpret as evidence for recurrent founder events. Simulations show that recurrent founder events are expected to decrease the piX/piA estimates in S. mimosarum, thus underestimating the true effect of female-biased sex ratios. Finally, we found lower synonymous divergence on X chromosomes in both species, and the male-to-female substitution ratio to be higher than 1, indicating a higher mutation rate in males.


Asunto(s)
Evolución Biológica , Arañas/genética , Cromosoma X/genética , Animales , Variación Genética , Masculino , Dinámica Poblacional , Razón de Masculinidad
19.
Sci Adv ; 5(1): eaau6947, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30854422

RESUMEN

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.


Asunto(s)
Evolución Biológica , Genómica/métodos , Papio/genética , Animales , Secuencia de Bases , Femenino , Flujo Génico , Haplotipos/genética , Humanos , Hibridación Genética , Masculino , Filogenia , Polimorfismo Genético , Secuenciación Completa del Genoma
20.
Nat Ecol Evol ; 3(2): 286-292, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664699

RESUMEN

The human mutation rate per generation estimated from trio sequencing has revealed an almost linear relationship with the age of the father and the age of the mother, with fathers contributing about three times as many mutations per year as mothers. The yearly trio-based mutation rate estimate of around 0.43 × 10-9 is markedly lower than previous indirect estimates of about 1 × 10-9 per year from phylogenetic comparisons of the great apes calibrated by fossil evidence. This suggests either a slowdown in the accumulation of mutations per year in the human lineage over the past 10 million years or an inaccurate interpretation of the fossil record. Here we inferred de novo mutations in chimpanzee, gorilla, and orangutan parent-offspring trios. Extrapolating the relationship between the mutation rate and the age of parents from humans to these other great apes, we estimated that each species has higher mutation rates per year by factors of 1.50 ± 0.10, 1.51 ± 0.23, and 1.42 ± 0.22 for chimpanzee, gorilla, and orangutan, respectively, and by a factor of 1.48 ± 0.08 for the three species combined. These estimates suggest an appreciable slowdown in the yearly mutation rate in the human lineage that is likely to be recent as genome comparisons almost adhere to a molecular clock. If the nonhuman rates rather than the human rate are extrapolated over the phylogeny of the great apes, we estimate divergence and speciation times that are much more in line with the fossil record and the biogeography.


Asunto(s)
Evolución Molecular , Variación Genética , Hominidae/genética , Mutación , Animales , Evolución Biológica , Fósiles , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...