Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 922: 171425, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38432384

RESUMEN

Conventional soil management in agricultural areas may expose non-target organisms living nearby to several types of contaminants. In this study, the effects of soil management in extensive pasture (EP), intensive pasture (IP), and sugarcane crops (C) were evaluated in a realistic-field-scale study. Thirteen aquatic mesocosms embedded in EP, IP, and C treatments were monitored over 392 days. The recommended management for each of the areas was simulated, such as tillage, fertilizer, pesticides (i.e. 2,4-D, fipronil) and vinasse application, and cattle pasture. To access the potential toxic effects that the different steps of soil management in these areas may cause, the cladoceran Ceriophania silvestrii was used as aquatic bioindicator, the dicot Eruca sativa as phytotoxicity bioindicator in water, and the dipteran Chironomus sancticaroli as sediment bioindicator. Generalized linear mixed models were used to identify differences between the treatments. Low concentrations of 2,4-D (<97 µg L-1) and fipronil (<0.21 µg L-1) in water were able to alter fecundity, female survival, and the intrinsic rate of population increase of C. silvestrii in IP and C treatments. Similarly, the dicot E. sativa had germination, shoot and root growth affected mainly by 2,4-D concentrations in the water. For C. sancticarolli, larval development was affected by the presence of fipronil (<402.6 ng g-1). The acidic pH (below 5) reduced the fecundity and female survival of C. silvestrii and affected the germination and growth of E. sativa. Fecundity and female survival of C. silvestrii decrease in the presence of phosphorus-containing elements. The outcomes of this study may improve our understanding of the consequences of exposure of freshwater biota to complex stressors in an environment that is rapidly and constantly changing.


Asunto(s)
Plaguicidas , Saccharum , Contaminantes Químicos del Agua , Femenino , Animales , Bovinos , Plaguicidas/toxicidad , Biomarcadores Ambientales , Suelo , Agua/química , Ácido 2,4-Diclorofenoxiacético/toxicidad , Contaminantes Químicos del Agua/toxicidad
2.
Environ Sci Pollut Res Int ; 30(8): 21010-21024, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36264462

RESUMEN

This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Animales , Larva , Acetilcolinesterasa/metabolismo , Saccharum/metabolismo , Brasil , Fertilizantes , Catalasa/metabolismo , Anuros , Ácido 2,4-Diclorofenoxiacético/metabolismo , Glutatión Transferasa/metabolismo , Contaminantes Químicos del Agua/metabolismo
3.
Sci Total Environ ; 844: 157238, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35810907

RESUMEN

Tropical streams have been intensively impacted by agricultural activities. Among the most important agricultural activities in Brazil, sugarcane production represents a large impact for economic development and for environmental conditions. Permeating sugarcane fields, several headwater streams can be affected by sugarcane cultivation, in special, aquatic biogeochemical cycles because of the deforestation, fertilization, crop residues and higher temperatures in the tropics. In this study, we analyzed the effects of sugarcane cultivation on methane fluxes and concentrations, assuming that carbon cycles are influenced by agricultural activities in headwater streams. Our study aimed to (1) measure methane fluxes and concentrations in tropical streams located in Southeastern Brazil, (2) Analyze whether seasonal cycles influence methane fluxes and concentrations, (3) Evaluate the influence of sugarcane cultivation on methane fluxes and (4) Analyze the association between water chemistry in the methane concentrations in tropical streams. We found mean fluxes of CH4 of 0.280 mmol m-2 d-1, with higher fluxes during the summer and in streams draining preserved catchments. The average CH4 concentrations were 0.695 µmol L-1, with higher values during the summer and in streams draining preserved catchments. Methane concentrations in the studied streams was influenced by dissolved oxygen (negatively), dissolved organic carbon (negatively), water velocity (positively) and conductivity (negatively). Methane concentrations were significantly higher than concentrations found in Temperate Grasslands, Savannas & Shrublands and similar to concentrations found in other tropical biomes (excluding Tropical & Subtropical Moist Broadleaf Forests which receives large amounts of organic inputs). We conclude that sugarcane influence methane concentrations and fluxes in tropical streams by reducing the organic matter availability provided by the native vegetation in soil and water.


Asunto(s)
Metano , Ríos , Agricultura , Dióxido de Carbono , Bosques , Ríos/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA